TY - GEN A1 - Glukhov, Artem A1 - Lepri, Nicola A1 - Milo, Valerio A1 - Baroni, Andrea A1 - Zambelli, Cristian A1 - Olivo, Piero A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays T2 - Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022) N2 - Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations. KW - RRAM KW - HfO2 KW - neural network KW - memristive switching Y1 - 2022 U6 - https://doi.org/10.1109/VLSI-SoC54400.2022.9939653 SP - 1 EP - 5 ER - TY - GEN A1 - Glukhov, Artem A1 - Milo, Valerio A1 - Baroni, Andrea A1 - Lepri, Nicola A1 - Zambelli, Cristian A1 - Olivo, Piero A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators T2 - 2022 IEEE International Reliability Physics Symposium (IRPS) N2 - Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators. KW - RRAM KW - Multilevel switching KW - neural network Y1 - 2022 SN - 978-1-6654-7950-9 SN - 978-1-6654-7951-6 U6 - https://doi.org/10.1109/IRPS48227.2022.9764497 SN - 2473-2001 SP - 3C.3-1 EP - 3C.3-7 PB - Institute of Electrical and Electronics Engineers (IEEE) ER -