TY - GEN A1 - Shrestha, Krishna Prasad A1 - Lhuillier, Charles A1 - Barbosa, Amanda Alves A1 - Brequigny, Pierre A1 - Contino, Francesco A1 - Mounaïm-Rousselle, Christine A1 - Seidel, Lars A1 - Mauß, Fabian T1 - An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature T2 - Proceedings of the Combustion Institute N2 - Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21 to 30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0 to 30 vol.%) at elevated pressure (1–10 bar) and temperature (298–473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated. KW - Ammonia KW - Laminar flame speed KW - Kinetic modeling KW - Ammonia-hydrogen KW - NOx Y1 - 2020 UR - https://www.sciencedirect.com/science/article/pii/S1540748920302881#! U6 - https://doi.org/10.1016/j.proci.2020.06.197 SN - 1540-7489 VL - 2020 SP - 1 EP - 12 ER - TY - GEN A1 - David, William I. F. A1 - Agnew, Gerry D. A1 - Bañares-Alcántara, René A1 - Barth, James A1 - Hansen, John Bogild A1 - Bréquigny, Pierre A1 - De Joannon, Mara A1 - Fürstenberg Stott, Sofia A1 - Fürstenberg Stott, Conor A1 - Guati-Rojo, Andrea A1 - Hatzell, Marta A1 - MacFarlane, Douglas R. A1 - Makepeace, Joshua W. A1 - Mastorakos, Epaminondas A1 - Mauß, Fabian A1 - Medford, Andrew A1 - Mounaim-Rousselle, Christine A1 - Nowicki, Duncan A. A1 - Picciani, Mark A. A1 - Postma, Rolf S. A1 - Rouwenhorst, Kevin H. R. A1 - Sabia, Pino A1 - Salmon, Nicholas A1 - Simonov, Alexandr N. A1 - Smith, Collin A1 - Torrente-Murciano, Laura A1 - Valera-Medina, Augustin T1 - 2023 Roadmap on ammonia as a carbon-free fuel T2 - Journal of Physics: Energy N2 - The 15 short chapters that form this 2023 ammonia-for-energy roadmap provide a comprehensive assessment of the current worldwide ammonia landscape and the future opportunities and associated challenges facing the use of ammonia, not only in the part that it can play in terms of the future displacement of fossil-fuel reserves towards massive, long-term, carbon-free energy storage and heat and power provision, but also in its broader holistic impacts that touch all three components of the future global food-water-energy nexus. Y1 - 2024 U6 - https://doi.org/10.1088/2515-7655/ad0a3a SN - 2515-7655 VL - 6 IS - 2 ER -