TY - GEN A1 - Ingenbosch, Kim N. A1 - Quint, Stephan A1 - Dyllick-Brenzinger, Melanie A1 - Wunschik, Dennis S. A1 - Kiebist, Jan A1 - Süss, Philipp A1 - Liebelt, Ute A1 - Zuhse, Ralf A1 - Menyes, Ulf A1 - Scheibner, Katrin A1 - Mayer, Christian A1 - Opwis, Klaus A1 - Gutmann, Jochen S. A1 - Hoffmann-Jacobsen, Kerstin T1 - Singlet oxygen generation by peroxidases and peroxygenases for chemo-enzymatic synthesis T2 - ChemBioChem N2 - Singlet oxygen is a reactive oxygen species undesired in living cells but a rare and valuable reagent in chemical synthesis. We present a fluorescence spectroscopic analysis of the singlet‐oxygen formation activity of commercial peroxidases and novel peroxygenases. Singlet‐oxygen sensor green (SOSG) is used as fluorogenic singlet oxygen trap. Establishing a kinetic model for the reaction cascade to the fluorescent SOSG endoperoxide permits a kinetic analysis of enzymatic singlet‐oxygen formation. All peroxidases and peroxygenases show singlet‐oxygen formation. No singlet oxygen activity could be found for any catalase under investigation. Substrate inhibition is observed for all reactive enzymes. The commercial dye‐decolorizing peroxidase industrially used for dairy bleaching shows the highest singlet‐oxygen activity and the lowest inhibition. This enzyme was immobilized on a textile carrier and successfully applied for a chemical synthesis. Here, ascaridole was synthesized via enzymatically produced singlet oxygen. KW - Peroxygenase Y1 - 2021 U6 - https://doi.org/10.1002/cbic.202000326 SN - 1439-7633 SN - 1439-4227 VL - 22 IS - 2 SP - 398 EP - 407 ER -