TY - GEN A1 - Franken, Tim A1 - Mauß, Fabian A1 - Seidel, Lars A1 - Gern, Maike Sophie A1 - Kauf, Malte A1 - Matrisciano, Andrea A1 - Kulzer, Andre Casal T1 - Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry T2 - International Journal of Engine Research N2 - This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and coworkers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at l = 1 at full load using water–fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air–fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air–fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions. KW - Water Injection KW - Exhaust Gas Recirculation KW - Efficiency KW - Spark Ignition Engine KW - Stochastic Reactor Model KW - Emissions Y1 - 2020 UR - https://journals.sagepub.com/doi/abs/10.1177/1468087420933124 U6 - https://doi.org/10.1177/1468087420933124 SN - 2041-3149 SN - 1468-0874 VL - 21 IS - 10 SP - 1857 EP - 1877 ER - TY - GEN A1 - Shrestha, Krishna Prasad A1 - Lhuillier, Charles A1 - Barbosa, Amanda Alves A1 - Brequigny, Pierre A1 - Contino, Francesco A1 - Mounaïm-Rousselle, Christine A1 - Seidel, Lars A1 - Mauß, Fabian T1 - An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature T2 - Proceedings of the Combustion Institute N2 - Laminar flame speeds of ammonia with oxygen-enriched air (oxygen content varying from 21 to 30 vol.%) and ammonia-hydrogen-air mixtures (fuel hydrogen content varying from 0 to 30 vol.%) at elevated pressure (1–10 bar) and temperature (298–473 K) were determined experimentally using a constant volume combustion chamber. Moreover, ammonia laminar flame speeds with helium as an inert were measured for the first time. Using these experimental data along with published ones, we have developed a newly compiled kinetic model for the prediction of the oxidation of ammonia and ammonia-hydrogen blends in freely propagating and burner stabilized premixed flames, as well as in shock tubes, rapid compression machines and a jet-stirred reactor. The reaction mechanism also considers the formation of nitrogen oxides, as well as the reduction of nitrogen oxides depending on the conditions of the surrounding gas phase. The experimental results from the present work and the literature are interpreted with the help of the kinetic model derived here. The experiments show that increasing the initial temperature, fuel hydrogen content, or oxidizer oxygen content causes the laminar flame speed to increase, while it decreases when increasing the initial pressure. The proposed kinetic model predicts the same trends than experiments and a good agreement is found with measurements for a wide range of conditions. The model suggests that under rich conditions the N2H2 formation path is favored compared to stoichiometric condition. The most important reactions under rich conditions are: NH2+NH=N2H2+H, NH2+NH2=N2H2+H2, N2H2+H=NNH+H2 and N2H2+M=NNH+H+M. These reactions were also found to be among the most sensitive reactions for predicting the laminar flame speed for all the cases investigated. KW - Ammonia KW - Laminar flame speed KW - Kinetic modeling KW - Ammonia-hydrogen KW - NOx Y1 - 2020 UR - https://www.sciencedirect.com/science/article/pii/S1540748920302881#! U6 - https://doi.org/10.1016/j.proci.2020.06.197 SN - 1540-7489 VL - 2020 SP - 1 EP - 12 ER - TY - GEN A1 - Issayev, Gani A1 - Giri, Binod Raj A1 - Elbaz, Ayman M. A1 - Shrestha, Krishna Prasad A1 - Mauß, Fabian A1 - Roberts, William L. A1 - Farooq, Aamir T1 - Combustion behavior of ammonia blended with diethyl ether T2 - Proceedings of the Combustion Institute N2 - Ammonia (NH3) is recognized as a carbon-free hydrogen-carrier fuel with a high content of hydrogen atoms per unit volume. Recently, ammonia has received increasing attention as a promising alternative fuel for internal combustion engine and gas turbine applications. However, the viability of ammonia fueling future combustion devices has several barriers to overcome. To overcome the challenge of its low reactivity, it is proposed to blend it with a high-reactivity fuel. In this work, we have investigated the combustion characteristics of ammonia/diethyl ether (NH3/DEE) blends using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR). Ignition delay times (IDTs) of NH3/DEE blends were measured using the RCM over a temperature range of 620 to 942 K, pressures near 20 and 40 bar, equivalence ratios (Φ) of 1 and 0.5, and a range of mole fractions of DEE, χDEE, from 0.05 to 0.2 (DEE/NH3 = 5 – 20%). Laminar burning velocities of NH3/DEE premixed flames were measured using the CVSR at 298 K, 1 bar, Φ of 0.9 to 1.3, and χDEE from 0.1 to 0.4. Our results indicate that DEE promotes the reactivity of fuel blends resulting in significant shortening of the ignition delay times of ammonia under RCM conditions. IDTs expectedly exhibited strong dependence on pressure and equivalence ratio for a given blend. Laminar burning velocity was found to increase with increasing fraction of DEE. The burnt gas Markstein length increased with equivalence ratio for χDEE = 0.1 as seen in NH3-air flames, while the opposite evolution of Markstein length was observed with Φ for 0.1 < χDEE ≤ 0.4, as observed in isooctane-air flames. A detailed chemical kinetics model was assembled to analyze and understand the combustion characteristics of NH3/DEE blends. KW - Ammonia KW - Diethyl ether KW - Ignition delay times KW - Laminar flame speed Y1 - 2020 U6 - https://doi.org/10.1016/j.proci.2020.06.337 SN - 1540-7489 VL - 38 (2021) IS - 1 SP - 499 EP - 506 ER - TY - GEN A1 - Elbaz, Ayman M. A1 - Giri, Binod Raj A1 - Issayev, Gani A1 - Shrestha, Krishna Prasad A1 - Mauß, Fabian A1 - Farooq, Aamir A1 - Roberts, William L. T1 - Experimental and Kinetic Modeling Study of Laminar Flame Speed of Dimethoxymethane and Ammonia Blends T2 - Energy & Fuels N2 - Ammonia (NH3) is considered a promising carbon-neutral fuel, with a high hydrogen content, that can diversify the global energy system. Blending ammonia with a highly reactive fuel is one possible strategy to enhance its combustion characteristics. Here, an investigation of blends of NH3 and dimethoxymethane (DMM), a biofuel with high fuel-born oxygen content and no carbon–carbon bonds, is reported. Unstretched laminar burning velocity (SL) and Markstein length of different NH3/DMM blends were experimentally determined using spherically propagating premixed flames. The DMM mole fraction was varied from 0.2 to 0.6 while measuring SL at 298 K, 0.1 MPa, and equivalence ratios (Φ) over the range of 0.8–1.3. The addition of DMM was found to immensely enhance the combustion characteristics of ammonia. DMM 20% (by mole fraction) in the NH3/DMM blend increased SL by more than a factor of 3 over neat ammonia; such enhancement was found to be comparable to 60% CH4 in NH3 (Φ = 0.9–1.1) blends. Increasing Φ was found to significantly decrease the burned gas Markstein length for lean cases, whereas a negligible effect was observed for rich mixtures. A composite chemical kinetic model of DMM/NH3, aimed at interpreting the high-temperature combustion chemistry, was able to reliably predict SL for neat NH3 and DMM flames. Also, the predictive capability of the kinetic model to describe SL for DMM/NH3 blends is reasonably good. Sensitivity analysis and reaction path analysis indicated that the NH3/DMM blends could be understood as dual oxidation processes of the individual fuels that are competing for the same radical pool. KW - Ammonia KW - Dimethoxymethane KW - Laminar flame speed KW - Kinetic modeling Y1 - 2020 UR - https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.0c02269 U6 - https://doi.org/10.1021/acs.energyfuels.0c02269 SN - 1520-5029 VL - 34 IS - 11 SP - 14727 EP - 14740 ER - TY - GEN A1 - Van Treek, Lisa A1 - Roth, Norbert A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Measurements of the laminar burning velocities of rich ethylene/air mixtures T2 - Fuel N2 - Laminar burning velocities of premixed ethylene/air flames were investigated under fuel lean and rich conditions. The laminar burning velocities were measured with the heat flux method at atmospheric pressure and unburnt gas temperatures of 298 K. The measurements have been performed for the equivalence ratio range of Φ = 0.7–2.5 using stabilized and flat flames on a perforated burner plate under adiabatic conditions. This is the first time that experimental measurements with the heat flux method of the ethylene/air flames under super fuel rich conditions are performed. The experimental data were compared against predictions using three different kinetic models and published flame speed. The measured flame speeds agree with other published data within the error margin. The experimental and predicted laminar flames do agree at fuel lean conditions, but there are some notable discrepancies under fuel rich conditions. KW - ethylene KW - laminar burning velocity KW - heat flux burner Y1 - 2020 UR - https://www.sciencedirect.com/science/article/pii/S0016236120309340 U6 - https://doi.org/10.1016/j.fuel.2020.117938 SN - 0016-2361 VL - 275 ER - TY - GEN A1 - Netzer, Corinna A1 - Li, Tian A1 - Seidel, Lars A1 - Mauß, Fabian A1 - Løvås, Terese T1 - Stochastic Reactor-Based Fuel Bed Model for Grate Furnaces T2 - Energy & Fuels N2 - Biomass devolatilization and incineration in grate-fired plants are characterized by heterogeneous fuel mixtures, often incompletely mixed, dynamical processes in the fuel bed and on the particle scale, as well as heterogeneous and homogeneous chemistry. This makes modeling using detailed kinetics favorable but computationally expensive. Therefore, a computationally efficient model based on zero-dimensional stochastic reactors and reduced chemistry schemes, consisting of 83 gas-phase species and 18 species for surface reactions, is developed. Each reactor is enabled to account for the three phases: the solid phase, pore gas surrounding the solid, and the bulk gas. The stochastic reactors are connected to build a reactor network that represents the fuel bed in grate-fired furnaces. The use of stochastic reactors allows us to account for incompletely mixed fuel feeds, distributions of local temperature and local equivalence ratio within each reactor and the fuel bed. This allows us to predict the released gases and emission precursors more accurately than if a homogeneous reactor network approach was employed. The model approach is demonstrated by predicting pyrolysis conditions and two fuel beds of grate-fired plants from the literature. The developed approach can predict global operating parameters, such as the fuel bed length, species release to the freeboard, and species distributions within the fuel bed to a high degree of accuracy when compared to experiments. Y1 - 2020 UR - https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.0c02868 U6 - https://doi.org/10.1021/acs.energyfuels.0c02868 SN - 1520-5029 VL - 34 IS - 12 SP - 16599 EP - 16612 ER - TY - GEN A1 - Shrestha, Krishna Prasad A1 - Seidel, Lars A1 - Zeuch, Thomas A1 - Moréac, Gladys A1 - Dagaut, Philippe A1 - Mauß, Fabian T1 - On the implications of nitromethane – NOx chemistry interactions for combustion processes T2 - Fuel N2 - In this work, we report a detailed investigation of the CH3NO2 chemistry effect on fuel-NO interactions for the fuels methane and n-heptane using a recently developed and extensively validated H2/O2/CO/NOx/NH3/CH3NO2 baseline chemistry. In general, the model predictions show good agreement with temperature profiles of major and intermediate species in jet-stirred reactor experiments and they capture the subtle effect of NO addition. For both fuels, the CH3NO2 kinetics retard the system reactivity in the low temperature range by delaying the production of key radicals like OH and HO2. This explains the retarding effect of NO for n-heptane low temperature ignition and the overprediction of reactivity enhancement by NO in earlier studies on methane combustion. For methane, the recently explored roaming mediated dissociation channel of CH3NO2 to CH3O + NO is a major reaction pathway for CH3NO2 consumption. Our analysis suggests that at higher pressure, relevant to engine conditions, the two key intermediate species HONO and CH3NO2 feature strongly increased concentrations during n-heptane combustion and they may be detectable under such conditions in combustion experiments of this fuel-NOx system. The results of this work call for detailed future investigations of the CH3NO2 chemistry effect in the context of exhaust gas recirculation, also with regard to the suppression of engine knock. KW - Nitromethane KW - NOx KW - Fuel-NOx KW - Kinetic modeling KW - EGR Y1 - 2021 UR - https://www.sciencedirect.com/science/article/pii/S001623612032857X#! U6 - https://doi.org/10.1016/j.fuel.2020.119861 SN - 0016-2361 VL - 289 ER - TY - GEN A1 - Franken, Tim A1 - Seidel, Lars A1 - Shrestha, Krishna Prasad A1 - Gonzalez Mestre, Laura Catalina A1 - Mauß, Fabian T1 - Multi-objective Optimization of Gasoline, Ethanol, and Methanol in Spark Ignition Engines N2 - In this study, an engine and fuel co-optimization is performed to improve the efficiency and emissions of a spark ignition engine utilizing detailed reaction mechanisms and stochastic combustion modelling. The reaction mechanism for gasoline surrogates (Seidel 2017), ethanol, and methanol (Shrestha et al. 2019) is validated for experiments at different thermodynamic conditions. Liquid thermophysical properties of the RON95E10 surrogate (iso-octane, n-heptane, toluene, and ethanol mixture), ethanol, and methanol are determined using the NIST standard reference database (NIST 2018) and Yaws database (Yaws 2014). The combustion chemistry, laminar flame speed, and thermophysical data are pre-compiled in look-up tables to speed up the simulations (tabulated chemistry). The auto-ignition in the stochastic reactor model is predicted by the detailed chemistry and subsequently evaluated using the Bradley Detonation Diagram (Bradley et al. 2002, Gu et al. 2003, Neter 2019), which assigns two dimensionless parameters (resonance parameter and reactivity parameter). According to the defined developing detonation limits, the auto-ignition is either in deflagration, sub-sonic auto-ignition, or developing detonation mode. Ethanol and methanol show a knock-reducing characteristic, which is mainly due to the high heat of vaporization. The multi-objective optimization process includes mathematical algorithms for design space exploration with Uniform Latin Hypercube, pareto front convergence with Non-dominated Sorting Genetic Algorithm II (NSGA-II), and multi-criteria decision making (Deb et al. 2002). The optimization input parameter ranges are selected according to the previous sensitivity analysis, and the objectives are to minimize specific CO2 and specific CO and maximize indicated efficiency. The performance study of different optimization algorithms shows that the incorporation of metamodels is beneficial to improve the design space exploration, while keeping the optimization duration low. The comparison of different reaction mechanisms, which are applied in the optimization process, shows a strong impact on the pareto front solutions. This is due to differences in the emission formation and auto-ignition between the different reaction schemes. Overall, the engine efficiency is increased by 3.5 % points, and specific CO2 emissions are reduced by 99 g/kWh for ethanol and 142 g/kWh for methanol combustion compared to the base case. This is achieved by advanced spark timing, lean combustion, and reduced C:H ratio of ethanol and methanol in relation to RON95E10. KW - Optimization KW - Methanol KW - Ethanol KW - Spark Ignition Engine KW - Gasoline KW - Simulation Y1 - 2021 UR - https://www.researchgate.net/publication/351688526_Multi-objective_Optimization_of_Gasoline_Ethanol_and_Methanol_in_Spark_Ignition_Engines ER - TY - GEN A1 - Shrestha, Krishna Prasad A1 - Giri, Binod Raj A1 - Adil, Mohammad A1 - Seidel, Lars A1 - Zeuch, Thomas A1 - Farooq, Aamir A1 - Mauß, Fabian T1 - Detailed Chemical Kinetic Study of Acetaldehyde Oxidation and Its Interaction with NOx T2 - Energy & fuels N2 - This work entails a detailed modeling and experimental study for the oxidation kinetics of acetaldehyde (CH3CHO) and its interaction with NOx. The ignition behavior of CH3CHO/O2/Ar has been investigated in a shock tube over the temperature range of 1149 to 1542 K, with equivalence ratios of 0.5 and 1.0 and pressures near 1.2 bar. Absorbance−time profiles of acetaldehyde were recorded using a mid-IR laser during the autoignition measurements. A comprehensive kinetic model has been developed to quantitatively predict the oxidation of acetaldehyde and its interaction with NOx. The kinetic model has been validated using experimental data of this work and available literature data from shock tube, plug flow, and jet-stirred reactors, freely propagating, and burner-stabilized premixed flames. For better accuracy of the kinetic model, the thermochemistry of 14 important species in the acetaldehyde submechanism was calculated using ab initio methods. The heat of formation of these species was computed using atomization and isodesmic reaction schemes. For the first time, this modeling study examines the effect of NO on acetaldehyde oxidation behavior over a wide range of experimental conditions. In most cases, the proposed kinetic model captures the experimental trends remarkably well. Interestingly, the doping of NO in CH3CHO did not perturb the NTC behavior of CH3CHO in contrast to other fuels, such as n-heptane and dimethyl ether. However, for flow reactor conditions at 1 atm, doping with 504 ppm of NO was found to promote the reactivity of acetaldehyde by lowering the onset temperature for CH3CHO oxidation by ∼140 K. The hydroxyl radical is the main cause of this shift, which originates from the NO + HO2 = OH + NO2 reaction. Further evolution of hydroxyl radicals occurs via the “NO−NO2” looping mechanism and expedites the reactivity of the system. This experimental and modeling work sheds new light on acetaldehyde oxidation behavior and its interaction with NOx under combustion-relevant conditions. KW - NOx KW - Kinetic modeling KW - Acetaldehyde KW - Ignition delay time Y1 - 2021 UR - https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c01948?ref=pdf U6 - https://doi.org/10.1021/acs.energyfuels.1c01948 SN - 1520-5029 SN - 0887-0624 VL - 35 IS - 18 SP - 14963 EP - 14983 ER - TY - GEN A1 - Issayev, Gani A1 - Giri, Binod Raj A1 - Elbaz, Ayman M. A1 - Shrestha, Krishna Prasad A1 - Mauß, Fabian A1 - Roberts, William L. A1 - Farooq, Aamir T1 - Ignition delay time and laminar flame speed measurements of ammonia blended with dimethyl ether: A promising low carbon fuel blend T2 - Renewable Energy N2 - Ammonia (NH3) has recently received much attention as a promising future fuel for mobility and power generation. The use of ammonia as a fueling vector can help curb global warming by cutting CO2 emissions because it is a carbon-free fuel and a hydrogen carrier with a high percentage of hydrogen atoms per unit volume. Liquid ammonia contains a higher volumetric density of hydrogen than liquid hydrogen. The low reactivity of ammonia, however, hinders its direct usage as a combustible fuel. One feasible way to boost the reactivity of ammonia is to target a dual-fuel system comprising of ammonia and a suitable combustion promoter. In this work, combustion properties of ammonia were investigated by blending it with various proportions of dimethyl ether (DME) using a rapid compression machine (RCM) and a constant volume spherical reactor (CVSR) over a wide range of experimental conditions. DME is a highly reactive fuel that may be produced in a sustainable carbon cycle with a net zero-carbon emission. Ignition delay times (IDTs) of NH3/DME blends were measured over a temperature (T) range of 649e950 K, pressures (P) of 20 and 40 bar, equivalence ratios (F) of 0.5 and 1 for a range of DME mole fractions (cDME) of 0.05e0.5 in the blends. In addition, the laminar burning velocities of NH3/DME blends were measured at P ¼ 1, 3 and 5 bar, F ¼ 0.8e1.3 and T ¼ 300 K for cDME ranging from 0.18 to 0.47. Our results suggest that DME is a good ignition promoter, resulting in a significant shortening of IDTs and an increase of flame speeds of NH3. A detailed chemical model has been developed and validated against the experimental data. Overall, our kinetic model offered reasonable predictive capabilities capturing the experimental trends over a wide range of conditions. In the worst-case scenario, our model underpredicted IDTs by a factor of ~2.5 while overpredicting laminar flame speed by ~20%. KW - DME KW - Lamianr flame speed KW - Ignition delay time KW - Kinetic modeling KW - Ammonia Y1 - 2022 UR - https://www.sciencedirect.com/science/article/pii/S0960148121014440?via%3Dihub#! U6 - https://doi.org/10.1016/j.renene.2021.09.117 SN - 1879-0682 VL - 181 SP - 1353 EP - 1370 ER -