TY - GEN A1 - Buß, Lars A1 - Braud, Nicolas A1 - Ewert, Moritz A1 - Jugovac, Matteo A1 - Mentes, Tevfik Onur A1 - Locatelli, Andrea A1 - Falta, Jens A1 - Flege, Jan Ingo T1 - In-situ growth characterization of 2D heterostructures: MoSe2 on intercalated graphene/Ru(0001) T2 - Verhandlungen der DPG N2 - Despite the great fundamental interest in 2D heterostructures, most of the investigated 2D heterostructures were realized by mechanical exfoliation or chemical vapor deposition in the millibar range, preventing true in-situ characterization of the growth process. Here, we have investigated the growth of MoSe2 on single-layer graphene on Ru(0001) via real-time in-situ low-energy electron microscopy and micro-diffraction. After preparation of the graphene by standard procedures from an ethylene precursor, MoSe2 has been prepared via co-deposition of Mo and Se. Prior Se intercalation of the graphene appears to enhance the subsequent growth of MoSe2 on the graphene. At elevated temperatures, rotational ordering of the MoSe2 is facilitated by the strongly enhanced mobility of single-domain MoSe2 islands that align with the high symmetry orientations of the underlying graphene, indicating a non-negligible interaction between the two van-der-Waals materials. Micro-spot angle-resolved photoemission proves the monolayer nature of the as-grown MoSe2 as well as the free-standing character of the Se-intercalated graphene underneath. KW - MoSe2 KW - low-energy electron microscopy (LEEM9 KW - micro-diffraction Y1 - 2023 UR - https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/o/session/74/contribution/1 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Buß, Lars A1 - Braud, Nicolas A1 - Ewert, Moritz A1 - Jugovac, Matteo A1 - Menteş, Tevfik Onur A1 - Locatelli, Andrea A1 - Falta, Jens A1 - Flege, Jan Ingo T1 - Unraveling van der Waals epitaxy: A real-time in-situ study of MoSe2 growth on graphene/Ru(0001) T2 - Ultramicroscopy N2 - In the present work we investigate the growth of monolayer MoSe2 on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe2 on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe2 flakes. Local micro-spot angle-resolved photoemission spectroscopy reveals the electronic structure of the heterostructure, indicating that no charge transfer occurs within adjacent layers. The observed behavior is attributed to intercalation of Se at the graphene/Ru(0001) interface. The unperturbed nature of the proposed heterostructure therefore renders it as a model system for investigations of graphene supported TMD nanostructures. KW - Graphene KW - transition metal dichalcogenides (TMDs) KW - angle-resolved photoemission spectroscopy (ARPES) KW - Heterostructures KW - low energy electron microscopy (LEEM) KW - low energy electron diffraction (LEED) Y1 - 2023 U6 - https://doi.org/10.1016/j.ultramic.2023.113749 SN - 0304-3991 SN - 1879-2723 VL - 250 ER - TY - GEN A1 - Braud, Nicolas A1 - Buß, Lars A1 - Lundgren, Edvin A1 - Merte, Lindsay R. A1 - Wallander, Harald J. A1 - Krisponeit, Jon-Olaf A1 - Locatelli, Andrea A1 - Mentes, Tevfik Onur A1 - Jugovac, Matteo A1 - Flege, Jan Ingo A1 - Falta, Jens T1 - Cleaning and tailoring the Pt3Sn(111) surface for surface experiments T2 - Surface Science N2 - The cleaning process of the bimetallic Pt3Sn(111) surface has been studied by means of low-energy electron microscopy (LEEM), microspot low-energy electron diffraction (-LEED), and X-ray photoemission electron microscopy (XPEEM). Different cleaning procedures, performed under ultra-high vacuum conditions (UHV), including sputtering with argon ions and repeated cycles of annealing up to 1500 K were investigated. In this work, we show that a clean Pt3Sn(111) surface of high structural quality with a sharp and brilliant (2 × 2) bulk reconstruction in LEED as well as a perfectly smooth surface with terraces of micron size can be achieved by sputtering, annealing at very high temperatures, followed by a subsequent slow (0.09 K/s) and careful cooling procedure. Additionally, we show the possibility of tailoring the Sn concentration in the topmost layers of Pt3Sn(111) as a function of annealing temperature and subsequent cooling rate. Structural changes of the surface are induced by Sn segregation combined with a surface order–disorder transition at 1340 K. Moreover, two new surface reconstructions depending on the cooling rate are reported. KW - Pt3Sn KW - Low-energy electron microscopy (LEEM) KW - Platinum KW - Tin KW - Cleaning KW - Alloy Y1 - 2023 U6 - https://doi.org/10.1016/j.susc.2023.122281 SN - 0039-6028 SN - 1879-2758 VL - 732 ER - TY - GEN A1 - Jugovac, Matteo A1 - Menteş, Tevfik Onur A1 - Genuzio, Francesca A1 - Lachnitt, Jan A1 - Feyer, Vitaliy A1 - Flege, Jan Ingo A1 - Locatelli, Andrea T1 - Sensitivity to crystal stacking in low-energy electron microscopy T2 - Applied Surface Science N2 - In this work we demonstrate the general characteristics of hcp and fcc stacking in low-energy electron reflectivity for transition metal surfaces, by following the restacking during homoepitaxial growth in real-time. For this purpose, the stacking of a model system, single-crystalline Ag islands during layer-by-layer growth at high temperature on O/W(110), is chosen. Multiple scattering calculations are used to model the relation between electron reflectivity and the crystal geometry. The changes in the electron reflectivity are shown to derive from the changes in the stacking sequence of the topmost surface layers. The results allow to distinguish between the hcp and fcc crystalline arrangements at a surface based on typical differences in the reflectivity curves, making the Ag results relevant for a variety of materials with hexagonal surface geometry. In particular, the multiplet structure within the first Bragg peak in the very low electron energy regime is identified with the fcc structure and thus it can be utilized as a fingerprint to determine the stacking sequence. KW - LEEM-I(V) KW - Stacking fault KW - fcc KW - hcp KW - Ag(111) Y1 - 2021 U6 - https://doi.org/10.1016/j.apsusc.2021.150656 SN - 0169-4332 SN - 1873-5584 VL - 566 ER -