TY - GEN A1 - Schmeißer, Dieter A1 - Henkel, Karsten A1 - Müller, Klaus A1 - Tallarida, Massimo T1 - Interface Reactions in Ultrathin Functional Dielectric Films KW - ultrathin KW - dielectric Y1 - 2009 ER - TY - GEN A1 - Tallarida, Massimo A1 - Karavaev, Konstantin A1 - Schmeißer, Dieter T1 - HfO2/Si interface formation in atomic layer deposition films: an in situ investigation KW - atomic layer deposition Y1 - 2009 ER - TY - GEN A1 - Kolanek, Krzysztof A1 - Tallarida, Massimo A1 - Karavaev, Konstantin A1 - Schmeißer, Dieter T1 - In situ studies of the atomic layer deposition of thin HfO2 dielectrics by ultra high vacuum atomic force microscope KW - in situ KW - atomic layer deposition KW - dielectric KW - microscope Y1 - 2010 ER - TY - CHAP A1 - Starzyk, Łukasz A1 - Tallarida, Massimo A1 - Schmeißer, Dieter T1 - Band alignment of high-k/SiO2/Si stacks incorporating Zr and Al oxides prepared by atomic layer deposition Y1 - 2010 ER - TY - GEN A1 - Kolanek, Krzysztof A1 - Tallarida, Massimo A1 - Schmeißer, Dieter T1 - Atomic layer deposition of HfO2 investigated in situ by means of a noncontact atomic force microscopy Y1 - 2010 ER - TY - GEN A1 - Das, Chittaranjan A1 - Richter, Matthias A1 - Tallarida, Massimo A1 - Schmeißer, Dieter T1 - Electronic properties of atomic layer deposited films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy T2 - Journal of Physics D: Applied Physics N2 - The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs. KW - titanium dioxide (TiO2) KW - resonant photoemission spectroscopy (resPES) KW - defect states KW - partial density of states (pDOS) KW - charge neutrality level (CNL) Y1 - 2016 U6 - https://doi.org/10.1088/0022-3727/49/27/275304 SN - 0022-3727 SN - 1361-6463 VL - 49 IS - 27 SP - 275304-1 EP - 275304-17 ER - TY - GEN A1 - Kot, Małgorzata A1 - Kegelmann, Lukas A1 - Köbler, Hans A1 - Vorokhta, Mykhailo A1 - Escudero, Carlos A1 - Kúš, Peter A1 - Šmíd, Břetislav A1 - Tallarida, Massimo A1 - Albrecht, Steve A1 - Abate, Antonio A1 - Matolínová, Iva A1 - Schmeißer, Dieter A1 - Flege, Jan Ingo T1 - In situ Near-Ambient Pressure X-ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite T2 - ChemSusChem N2 - For several years, scientists have been trying to understand the mechanisms that reduce the long‐term stability of perovskite solar cells. In this work, we examined the effect of water and photon flux on the stability of CH3NH3PbI3 perovskite films and solar cells using in situ near‐ambient pressure X‐ray photoelectron spectroscopy (NAP‐XPS), field emission scanning electron microscopy (FESEM), and current density–voltage (J–V) characterization. The used amount of water vapor (up to 1 mbar) had a negligible impact on the perovskite film. The higher the photon flux, the more prominent were the changes in the NAP‐XPS and FESEM data; also, a faster decline in power conversion efficiency (PCE) and a more substantial hysteresis in the J‐V characteristics were observed. Based on our results, it can be concluded that the PCE decrease originates from the creation of Frenkel pair defects in the perovskite film under illumination. The stronger the illumination, the higher the number of Frenkel defects, leading to a faster PCE decline and more substantial hysteresis in the J‐V sweeps. KW - field emission scanning electron microscopy (FESEM) KW - Frenkel defects KW - near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) KW - perovskite KW - photon-induced degradation Y1 - 2020 U6 - https://doi.org/10.1002/cssc.202001527 SN - 1864-5631 SN - 1864-564X VL - 13 IS - 21 SP - 5722 EP - 5730 ER - TY - GEN A1 - Dorp, Dennis H. von A1 - Nyns, Laura A1 - Cuypers, Daniel A1 - Ivanov, Tsvetan A1 - Brizzi, Simone A1 - Tallarida, Massimo A1 - Fleischmann, Claudia A1 - Hönicke, Philipp A1 - Müller, Matthias A1 - Richard, Olivier A1 - Schmeißer, Dieter A1 - De Gendt, Stefan A1 - Lin, Dennis H. C. A1 - Adelmann, Christoph T1 - Amorphous Gadolinium Aluminate as a Dielectric and Sulfur for Indium Phosphide Passivation T2 - ACS Applied Electronic Materials N2 - The passivation of n-type InP (100) using sulfur in combination with a gadolinium aluminate (GAO) dielectric layer has been studied. Photoluminescence, minority-carrier lifetime, and capacitance−voltage measurements indicate that a (NH4)2S vapor passivation step prior to atomic layer deposition of the oxide effectively lowers the interface state density. Surface and interface chemistry were studied by synchrotron radiation photoemission spectroscopy (SRPES). The effect of ex situ surface passivation after native oxide removal in HCl solution was examined. It was observed that surface reoxidation occurred during (NH4)2S vapor exposure, leading to the formation of Inx(HPO4)y. S was present on the surface as a sulfide in both surface and subsurface sites. After atomic layer deposition of GAO, sulfates were detected in addition to Inx(HPO4)y, which was confirmed by near-edge X-ray absorptionfine structure analysis. The S in the stack was quantified using reference-free grazing incidence X-rayfluorescence analysis. X-ray absorption spectroscopy showed that Gd was oxidized and present in the 3+ oxidation state, most likely as a phosphate close to the InP interface and possibly mixed with sulfates. Energy-dependent SRPES measurements of Al 2p and Gd 4d core levels, complemented by transmission electron microscopy, further suggest that the dielectric layer was segregated. Valence band measurements confirm the effective passivation of InP, indicating unpinning of the surface Fermi level. KW - III−V KW - InP KW - sulfur passivation KW - atomic layer deposition KW - gadolinium aluminate KW - rare earth oxide KW - dielectric Y1 - 2019 U6 - https://doi.org/10.1021/acsaelm.9b00388 SN - 2637-6113 VL - 1 IS - 11 SP - 2190 EP - 2201 ER - TY - CHAP A1 - Henkel, Karsten A1 - Kot, Małgorzata A1 - Richter, Matthias A1 - Tallarida, Massimo A1 - Schmeißer, Dieter ED - Wandelt, Klaus T1 - An (In Situ)² Approach: ALD and resPES Applied to Al₂O₃, HfO₂, and TiO₂ Ultrathin Films T2 - Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Vol. 3.1 N2 - Oxide surface coatings are of importance in tailoring interface properties with respect to surface passivation, adjustment of surface potentials, or providing active centers for surface reactions. In this contribution, we report about surface coatings prepared by the atomic layer deposition (ALD) method. ALD is known for its conformal growth of ultrathin, dense films which exhibit a low concentration of pinholes. KW - Atomic layer deposition (ALD) KW - Resonant photoelectron spectroscopy (resPES) KW - Band scheme KW - Partial density of states (pDOS) KW - Intrinsic charges KW - Intrinsic defects KW - Aluminum oxide (Al₂O₃) KW - Hafnium oxide (HfO₂) KW - Titanium oxide(TiO₂) Y1 - 2018 SN - 978-0-12-809739-7 SN - 978-0-12-809894-3 U6 - https://doi.org/10.1016/B978-0-12-409547-2.13852-1 SP - 18 EP - 26 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Indra, Arindam A1 - Menezes, Prashanth W. A1 - Das, Chittaranjan A1 - Göbel, Caren A1 - Tallarida, Massimo A1 - Schmeißer, Dieter A1 - Driess, Matthias T1 - A facile corrosion approach to the synthesis of highly active CoOxwater oxidation catalysts T2 - Journal of Materials Chemistry A N2 - Ultra-small rock salt cobalt monoxide (CoO) nanoparticles were synthesized and subjected to partial oxidation (‘corrosion’) with ceric ammonium nitrate (CAN) to form mixed-valence CoOx(1 < x< 2) water oxidation catalysts. Spectroscopic, microscopic and analytical methods evidenced a structural reformation of cubic CoO to active CoOx with a spinel structure. The superior water oxidation activity of CoOx has been established in electrochemical water oxidation under alkaline conditions. Electrochemical water oxidation with CoOx was recorded at a considerably low overpotential of merely 325 mV at a current density of 10 mA cm-2 in comparison to 370 mV for CoO. Transformation of both octahedral CoII and CoIII sites into amorphous Co(OH)2–CoOOH is the key to high electrochemical activity while the presence of a higher amount of octahedral CoIII sites in CoOx is imperative for an efficient oxygen evolution process. KW - water splitting KW - water oxidation KW - cobalt oxide catalyst KW - transmission electron microscopy (TEM) KW - X-ray photoelectron spectroscopy (XPS) KW - X-ray absorption spectroscopy (XAS) KW - Cyclic voltammetry (CV) Y1 - 2017 U6 - https://doi.org/10.1039/c6ta10650a SN - 2050-7488 SN - 2050-7496 IS - 5 SP - 5171 EP - 5177 ER -