TY - GEN A1 - Froeschke, Samuel A1 - Wolf, Daniel A1 - Hantusch, Martin A1 - Giebeler, Lars A1 - Wels, Martin A1 - Gräßler, Nico A1 - Büchner, Bernd A1 - Schmidt, Peer A1 - Hampel, Silke T1 - Synthesis of micro- and nanosheets of CrCl3–RuCl3 solid solution by chemical vapour transport T2 - Nanoscale N2 - Solid solutions of 2D transition metal trihalides are rapidly growing in interest for the search for new 2D materials with novel properties at nanoscale dimensions. In this regard, we present a synthesis method for the Cr1−xRuxCl3 solid solution and describe the behaviour of the unit cell parameters over the whole composition range, which in general follows Vegard's law in the range of a = 5.958(6)CrCl3 … 5.9731(5)RuCl3 Å, b = 10.3328(20)CrCl3 … 10.34606(21)RuCl3 Å, c = 6.110(5)CrCl3 … 6.0385(5)RuCl3 Å and β = 108.522(15)CrCl3 … 108.8314(14)RuCl3 °. The synthesized solid solution powder was subsequently used to deposit micro- and nanosheets directly on a substrate by applying chemical vapour transport in a temperature gradient of 575 °C → 525 °C for 2 h and 650 °C → 600 °C for 0.5 h as a bottom-up approach without the need for an external transport agent. The observed chromium chloride enrichment of the deposited crystals is predicted by thermodynamic simulation. The results allow for a nanostructure synthesis of this solid solution with a predictable composition down to about 30 nm in height and lateral size of several μm. When applying a quick consecutive delamination step, it is possible to obtain few- and monolayer structures, which could be used for further studies of downscaling effects for the CrCl3–RuCl3 solid solution. X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy were used to confirm the purity and quality of the synthesized crystals. KW - Crystal growth KW - Chemical vapor transport KW - Thermal analysis KW - Thermodynamic modeling KW - 2D layered compounds Y1 - 2022 UR - https://pubs.rsc.org/en/content/articlelanding/2022/NR/D2NR01366E U6 - https://doi.org/10.1039/D2NR01366E SN - 2040-3372 VL - 29 IS - 14 SP - 10483 EP - 10492 ER - TY - GEN A1 - Wels, Martin A1 - Schmidt, Peer T1 - Crystal growth of ternary phases with homogeneity range: Modeling and experiments T2 - Zeitschrift für Anorganische und Allgemeine Chemie N2 - Synthesizing crystals of ternary solid solutions M2Q3 (M=Bi, Q=Se, Te) with definite composition requires advanced knowledge on the phase relations in the system. By chemical vapor transport [1] the request of homogeneous crystallization can be fulfilled. The experimental scope gets supported by modeling. A phase diagram of the pseudobinary system generated with FactSage [2] (Fig. 1) provides the thermodynamic parameters of the miscibility gap respectively the solid solution. Additionally, these parameters are used to optimize the processes while chemical vapor transport with iodine [3]. The optimum transport conditions of ϑsource = 500 °C and ϑsink = 450 °C has been applied as for the synthesis of the binary compounds [4]. Both by modeling and experiments the congruent transport can be demonstrated, Fig. 2. KW - Crystal growth KW - Chemical vapor transport KW - Chalogenides KW - Solid solution KW - Phase diagram Y1 - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/zaac.201690018/full U6 - https://doi.org/10.1002/zaac.201690018 SN - 1521-3749 VL - 642 IS - 18 SP - 1066 ER - TY - RPRT A1 - Schmidt, Peer A1 - Donath, Ines A1 - Wels, Martin A1 - Pinnau, Sebastian A1 - Grau Turuelo, Constantino A1 - Breitkopf, Cornelia A1 - Hack, Klaus A1 - Baben, Moritz to A1 - Reis, Bruno A1 - Müller, Michael A1 - Sergeev, Dmitry A1 - Qi, Jia T1 - PCM Screening - Evaluierung eutektischer Gemische für den Einsatz als PCM: thermodynamische Modellierung und experimentelle Methoden : Energie Speicher: PCM-Screening : Schlussbericht N2 - Ein wichtiges Ziel der Bundesregierung ist der Ausbau des Anteils erneuerbarer Energien an der gesamten Stromerzeugung. Die Entwicklung optimierter Wärme- und Kältespeicher stellt einen wichtigen Baustein bei der Erreichung dieser Zielstellung dar. Elektrisch betriebene Wärmepumpen und Kompressionskältemaschinen sowie dezentrale Klein-BHKW bieten in Verbindung mit entsprechend dimensionierten, thermischen Speichern ein großes Potential zum Lastmanagement in Smart Grids und somit zur Netzintegration von Strom aus erneuerbaren Energien. Die im Projekt entwickelte Methodik zur Suche nach neuen Latentspeichermedien kann für ein breites Anwendungsfeld von Heiz- und Kühlanwendungen in Gebäuden bis hin zur Kraftwerkstechnik eingesetzt werden. Innerhalb der Fördermaßnahme „Anwendungsorientierte Forschung und Entwicklung zur nichtnuklearen Energieforschung“ im 6. Energieforschungsprogramm der Bundesregierung wurde durch die Projektarbeiten das Schwerpunktthema Energiespeicher (3.8) adressiert, wobei der Aspekt der Entwicklung neuer Materialien mit reduzierten Kosten für einen wirtschaftlichen Betrieb im Vordergrund stand. Speziell wurden dabei die Unterpunkte 3.8.4 Thermische Speicher zur Weiterentwicklung, Optimierung und Erprobung von PCM sowie 3.8.5 Übergeordnete Themen mit Modellen und Simulationswerkzeugen für die Auswahl und Bewertung neuer Speichermaterialien adressiert. Die Projektergebnisse besitzen aber auch Berührungspunkte mit den Schwerpunkten 3.12 Energieeffizienz in Industrie, Gewerbe, Handel und Dienstleistungen sowie 3.4 Solarthermische Kraftwerke, da mit der entwickelten Screening-Methode für diese Anwendungsfälle neue Wärmespeichermaterialien auf der Basis wasserfreier Salze mit höheren Prozesstemperaturen gefunden werden können. Durch den Einsatz von Methoden zur Modellierung und Simulation von Prozessen erfolgt gleichermaßen die Umsetzung einer energie- und ressourcenschonenden Forschungstätigkeit. Das im Projekt entwickelte Vorgehen hilft dabei, einen äußerst sparsamen Einsatz von Chemikalien, eine niedrige Belastung der Umwelt durch verringerten Entsorgungsaufwand der verbrauchten Stoffe sowie einen deutlich geringeren Aufwand und Energieeinsatz für die Messtechnik zu ermöglichen. Damit wurde zugleich das Schwerpunktthema 3.8.5 Modelle und Simulationswerkzeuge für die Auswahl und Bewertung neuer Speichermaterialien angesprochen. KW - Latentwärmespeicher KW - Phase diagram KW - Thermodynamic modeling KW - Thermal analysis Y1 - 2021 UR - https://www.tib.eu/de/suchen/id/TIBKAT:177643451X/ U6 - https://doi.org/10.2314/KXP:177643451X PB - TIB – Leibniz-Informationszentrum Technik und Naturwissenschaften CY - Hannover ER - TY - GEN A1 - Hansen, Felix A1 - Wels, Martin A1 - Froeschke, Samuel A1 - Popov, Alexey A1 - Wolf, Daniel A1 - Büchner, Bernd A1 - Schmidt, Peer A1 - Hampel, Silke T1 - Thermodynamic Evaluation and Chemical Vapor Transport of Few-Layer WTe2 T2 - Crystal Growth and Design N2 - Tungsten telluride WTe2 is the sole candidate of a group of two-dimensional layered transition metal dichalcogenides (TMDCs) MX2 with a thermodynamically stable 1T′-structure at room temperature. The binary system W/Te was audited with respect to a rational approach of planning and realization of a bottom-up synthesis of WTe2 nanostructures. Thus, the parameters of the synthesis via chemical vapor transports (CVT) were derived by thermodynamic simulations of the reaction pathway according to the Calphad method. Reflecting on the peritectic melting behavior at 1020 °C, the values of ΔfHm° (298 K) = −26.5 kJ·mol−1 and Sm° (298 K) = 132 J·mol−1 ·K−1 have been obtained. According to modeling, crystal growth by short time vapor transport is reasonable under the addition of bromine or TeBr4 in the temperature range between 650 and 750 °C. Experimental implementation of crystal growth of WTe2 nanosheets succeeded in a temperature gradient from 725 to 675 °C on yttria-stabilized zirconia (YSZ) (111) substrates, observing the deposition of single crystal sheets of high crystallinity with thicknesses of 15−20 nm (∼20−30 layers). The high crystallinity, pristine morphology, and overall quality of the deposited nanosheets is shown by means of atomic resolution transmission electron microscopy, selected area electron diffraction (SAED), and atomic force microscopy as well as profound double-polarized Raman spectroscopy. KW - Crystal growth KW - Chemical vapor transport KW - Thermodynamic modeling KW - 2D layered compounds KW - Chalcogenides KW - Phase diagram Y1 - 2020 UR - https://pubs.acs.org/doi/abs/10.1021/acs.cgd.0c01004 U6 - https://doi.org/10.1021/acs.cgd.0c01004 SN - 1528-7505 VL - 20 IS - 11 SP - 7341 EP - 7349 ER -