TY - CHAP A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Gerwin, Werner A1 - Fischer, Anton A1 - Zaplata, Markus Klemens A1 - Nenov, Rossen T1 - Feedbacks between structures and processes during initial ecosystem development in an artificial catchment T2 - European Geosciences Union, General Assembly 2013, Vienna, Austria, 07 – 12 April 2013 N2 - We studied the role of strutures and processes and their feedbacks during initial ecosystem development in the artificial catchment Chicken Creek. During the first seven years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic and abiotic compartments of the system. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed and defined boundary conditions. Y1 - 2013 UR - http://meetingorganizer.copernicus.org/EGU2013/EGU2013-6837.pdf N1 - EGU2013-6837 PB - European Geophysical Society CY - Katlenburg-Lindau ER - TY - CHAP A1 - Zaplata, Markus Klemens A1 - Kollmann, Johannes A1 - Ulrich, Werner A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Gerwin, Werner A1 - Fischer, Anton ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Cover balance or degree of autocorrelation? It is the same and integratively traces pattern formation during succession T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - It is widely acknowledged that increasing complexity is a key attribute of ecosystem genesis. This is particularly true for primary succession on homogeneous substrates. However, a mechanistic understanding of spatial colonisation and pattern formation during primary succession has not been achieved yet. Thus, we studied this topic for 7 years within an experimental catchment (6 ha) established in the post-mining landscape of eastern Germany. Equidistant permanent plots (120 plots à 25m²) allowed for autocorrelation analyses, and thus tracing the spatial development of species cover performance. For each species tested, the “cover balance” first increased due to colonization, while decreasing in the course of succession. Drawing a benefit from these temporal trends, we suggested cover balance levels revealed by autocorrelation analyses to best indicate well-defined phases in primary succession at spatial entities. Hence, with the help of this spatial approach, terrestrial succession can be understood now much better at the most general level of the hierarchy provided by Pickett et al. (1987). In accordance with these authors, at subordinated levels of the causal hierarchy differential species performance might get collectively explained by contributing processes or conditions, such as ecophysiological traits, life history strategies, competition and allelopathy of the occurring plant species. Further research is needed to understand their relative contributions to the pattern formation. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 228 EP - 229 ER - TY - GEN A1 - Zaplata, Markus Klemens A1 - Fischer, A. A1 - Winter, S. A1 - Schaaf, Wolfgang A1 - Veste, Maik ED - Holzheu, Stefan ED - Thies, B. T1 - Development of an initial ecosystem - II. Vegetation dynamics and soil pattern in an artificial water catchment in Lusatia, NE Germany T2 - GfÖ 2009: Dimensions of ecology - From global change to molecular ecology Y1 - 2009 SP - S. 124 PB - Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER) Selbstverlag CY - Bayreuth ER - TY - GEN A1 - Oleynik, Paul A1 - Berkmann, Fritz A1 - Reiter, Sebastian A1 - Schlipf, Jon A1 - Ratzke, Markus A1 - Yamamoto, Yuji A1 - Fischer, Inga Anita T1 - Strong Optical Coupling of Lattice Resonances in a Top-down Fabricated Hybrid Metal–Dielectric Al/Si/Ge Metasurface T2 - Nano Letters N2 - Optical metasurfaces enable the manipulation of the light–matter interaction in ultrathin layers. Compared with their metal or dielectric counterparts, hybrid metasurfaces resulting from the combination of dielectric and metallic nanostructures can offer increased possibilities for interactions between modes present in the system. Here, we investigate the interaction between lattice resonances in a hybrid metal–dielectric metasurface obtained from a single-step nanofabrication process. Finite-difference time domain simulations show the avoided crossing of the modes appearing in the wavelength-dependent absorptance inside the Ge upon variations in a selected geometry parameter as evidence for strong optical coupling. We find good agreement between the measured and simulated absorptance and reflectance spectra. Our metasurface design can be easily incorporated into a top-down optoelectronic device fabrication process with possible applications ranging from on-chip spectroscopy to sensing. KW - metamaterials KW - semiconductors KW - hybridization KW - optoelectronics Y1 - 2024 U6 - https://doi.org/10.1021/acs.nanolett.3c05050 SN - 1530-6984 SN - 1530-6992 VL - 24 IS - 10 SP - 3142 EP - 3149 ER - TY - GEN A1 - Kosto, Yuliia A1 - Tschammer, Rudi A1 - Morales, Carlos A1 - Henkel, Karsten A1 - Flege, Jan Ingo A1 - Ratzke, Markus A1 - Fischer, Inga Anita A1 - Costina, Ioan A1 - Alvarado Chavarin, Carlos A1 - Wenger, Christian T1 - Rational design and development of room temperature hydrogen sensors compatible with CMOS technology: a necessary step for the coming renewable hydrogen economy T2 - Proceedings of iCampus Conference Cottbus 2024 N2 - The transition towards a new, renewable energy system based on green energy vectors, such as hydrogen, requires not only direct energy conversion and storage systems, but also the development of auxiliary components, such as highly sensitive hydrogen gas sensors integrated into mass devices that operate at ambient conditions. Despite the recent advances in nanostructured metal oxide thin films in terms of simple fabrication processes and compatibility with integrated circuits, high sensitivity, and short response/recovery times usually require the use of expensive noble metals or elevated tem-peratures (>250 ºC), which results in high power consumption and poor long-term stability. This article presents the first steps of the work on developing a novel resistive hydrogen gas sensor based on ultrathin cerium oxide films, compatible with complementary metal oxide semiconductor technology and capable of operating at room temperature. Here, we show a multidisciplinary bottom-up approach combining different work areas for the sensor development, such as sensor architecture, sensing mechanism and deposition strategy of the active layer, electrical contact design depending on the desired electrical output, and fast testing under controlled environments. KW - gas sensors KW - micro-structering KW - atomic layer deposition KW - sensor platform Y1 - 2024 SN - 978-3-910600-00-3 U6 - https://doi.org/10.5162/iCCC2024/P21 SP - 182 EP - 185 PB - AMA Service GmbH CY - Wunstorf ER - TY - GEN A1 - Ulrich, Werner A1 - Piwczynski, Marcin A1 - Zaplata, Markus K. A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton T1 - Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties T2 - Oecologia N2 - During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors. Y1 - 2014 U6 - https://doi.org/10.1007/s00442-014-2954-2 VL - 175 IS - 3 SP - 985 EP - 995 ER - TY - GEN A1 - Biber, Peter A1 - Seifert, Stefan A1 - Zaplata, Markus K. A1 - Schaaf, Wolfgang A1 - Pretzsch, Hans A1 - Fischer, Anton T1 - Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem T2 - Biogeosciences N2 - We investigated surface and vegetation dynamics in the artificial initial ecosystem “Chicken Creek” (Lusatia, Germany) in the years 2006–2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system’s early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation–substrate feedback processes. Y1 - 2013 U6 - https://doi.org/10.5194/bg-10-8283-2013 VL - 10 SP - 8283 EP - 8303 ER - TY - GEN A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Fischer, Anton A1 - Gerwin, Werner A1 - Nenov, Rossen A1 - Pretzsch, Hans A1 - Zaplata, Markus K. T1 - Feedbacks between vegetation, surface structures and hydrology during initial development of the artificial catchment 'Chicken Creek' T2 - Procedia Environmental Sciences N2 - Our investigations at the artificial catchment ´Chicken Creek´ in Lusatia/Germany aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying this initial, probably less complex ecosystem. Intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, and vegetation dynamics. During the first seven years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic and abiotic compartments of the system. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed and defined boundary conditions. Y1 - 2013 U6 - https://doi.org/10.1016/j.proenv.2013.06.010 SN - 1878-0296 VL - 19 SP - 86 EP - 95 ER -