TY - GEN A1 - Reiter, Sebastian A1 - Han, Weijia A1 - Mai, Christian A1 - Spirito, Davide A1 - Jose, Josmy A1 - Zöllner, Marvin Hartwig A1 - Fursenko, Oksana A1 - Schubert, Markus Andreas A1 - Stemmler, Ivo A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Titanium Nitride Plasmonic Nanohole Arrays for CMOS-compatible integrated refractive index sensing: influence of layer thickness on optical properties T2 - Plasmonics Y1 - 2023 U6 - https://doi.org/10.1007/s11468-023-01810-3 SN - 1557-1963 SP - 1 EP - 13 ER - TY - GEN A1 - Pieper, Dawid A1 - Behnke, Eva‐Maria A1 - Dumke, Rieke A1 - Kehr‐Fuckel, Christel A1 - Radow, Carolin A1 - Schulze, Nils A1 - Follmann, Markus A1 - Schaefer, Corinna A1 - Prill, Robert A1 - Kopkow, Christian A1 - Bahns, Carolin A1 - Choi, Kyung‐Eun (Anna) A1 - Fischer, Lena T1 - Awareness of adapting clinical practice guidelines to a local context T2 - Clinical and public health guidelines N2 - Background Guideline recommendations are often not implemented in practice. This can be attributed to factors such as patient preferences and characteristics, structural conditions, personnel or other resources, as well as cultural or ethical aspects. Adaptations to the local context (e.g., regional or hospital) result in so-called locally adapted guidelines (LAGL), which could improve implementation. We aimed to assess the awareness of LAGL among guideline developers in Germany. Methods An online survey was conducted via LimeSurvey in May 2024. The questionnaire, designed based on literature and expert opinions, consisted of 23 items, predominantly with dichotomous response options. Recruitment was conducted via email. Direct contact addresses were identified using the German guideline registry (n = 397). Additionally, a mailing list distribution was conducted through the guidelines working group of the German Network for Evidence-Based Medicine (n = 316). Only fully completed questionnaires were included in the analysis. Data cleaning and descriptive analysis were performed using Excel. Results A total of 63 questionnaires were fully completed. The most represented groups were physicians (65%) and methodologists (24%), most frequently in coordination (76%) or as group members (62%). The most judicious reasons for developing a LAGL were differences in patient populations (48%), currency of recommendations (46%), and patient values and preferences (44%). The most commonly cited likely reasons for developing a LAGL were economic considerations (32%), differences in patient populations (30%), and currency of recommendations (30%). Many respondents (59%) were aware of the possibility of adapting existing guidelines to the local context. Among these, approximately half (49%) had already locally adapted a guideline, with 75% using an adaptation framework. Discussion LAGLs are known among guideline developers in Germany and are generally developed using adaptation frameworks. Potential reasons for preparing LAGLs are diverse, with some discrepancies between perceived valid and likely reasons. Highlights Over half (59%) of surveyed clinical practice guideline (CPG) developers in Germany were aware of the possibility of adapting CPGs to local contexts, and nearly half of them had practical experience doing so. Although several adaptation frameworks exist, only 44% of experienced adaptors were familiar with them, and among users, many found them only partly helpful. Differences in patient populations, outdated recommendations, and patient values were rated as the most valid reasons for local CPG adaptation, while economic factors were seen as the most likely driver in practice. Despite existing awareness, guideline adaptation to local settings remains underutilized and lacks structured implementation, highlighting the need for clearer definitions, better resources, and more practical examples. KW - Leitlinien Y1 - 2025 U6 - https://doi.org/10.1002/gin2.70025 SN - 2836-3973 VL - 2 IS - 3 SP - 1 EP - 7 PB - Wiley CY - Hobken, New Jersey ER - TY - CHAP A1 - Zaplata, Markus K. A1 - Kollmann, Johannes A1 - Ulrich, Werner A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Gerwin, Werner A1 - Fischer, Anton ED - Jeltsch, Florian ED - Joshi, Jasmin T1 - Cover balance or degree of autocorrelation? It is the same and integratively traces pattern formation during succession T2 - GfÖ 43rd Annual Meeting, Building bridges in ecology, linking systems, scales and disciplines, September 9 to 13, 2013, Potsdam, Germany N2 - It is widely acknowledged that increasing complexity is a key attribute of ecosystem genesis. This is particularly true for primary succession on homogeneous substrates. However, a mechanistic understanding of spatial colonisation and pattern formation during primary succession has not been achieved yet. Thus, we studied this topic for 7 years within an experimental catchment (6 ha) established in the post-mining landscape of eastern Germany. Equidistant permanent plots (120 plots à 25m²) allowed for autocorrelation analyses, and thus tracing the spatial development of species cover performance. For each species tested, the “cover balance” first increased due to colonization, while decreasing in the course of succession. Drawing a benefit from these temporal trends, we suggested cover balance levels revealed by autocorrelation analyses to best indicate well-defined phases in primary succession at spatial entities. Hence, with the help of this spatial approach, terrestrial succession can be understood now much better at the most general level of the hierarchy provided by Pickett et al. (1987). In accordance with these authors, at subordinated levels of the causal hierarchy differential species performance might get collectively explained by contributing processes or conditions, such as ecophysiological traits, life history strategies, competition and allelopathy of the occurring plant species. Further research is needed to understand their relative contributions to the pattern formation. Y1 - 2013 UR - http://www.gfoe-2013.de/download/130905_GFOe_2013_Abstracts.small.pdf SP - 228 EP - 229 ER - TY - GEN A1 - Ulrich, Werner A1 - Zaplata, Markus K. A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton A1 - Soliveres, Santiago A1 - Gotelli, Nicholas J. T1 - Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession T2 - Oikos N2 - Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies. Y1 - 2016 U6 - https://doi.org/10.1111/oik.02658 VL - 125 IS - 5 SP - 698 EP - 707 ER - TY - GEN A1 - Ulrich, Werner A1 - Piwczynski, Marcin A1 - Zaplata, Markus K. A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton T1 - Soil conditions and phylogenetic relatedness influence total community trait space during early plant succession T2 - Journal of Plant Ecology N2 - The total space of traits covered by the members of plant communities is an important parameter of ecosystem functioning and complexity. We trace the variability of trait space during early plant succession and ask how trait space co-varies with phylogenetic community structure and soil conditions. Particularly, we are interested in the small-scale variability in trait space and the influence of biotic and abiotic filters. We use data on species richness and soil conditions from the first 7 years of initial succession of an artificial catchment in north-eastern Germany. Total functional attribute diversity serves as a proxy to total trait space. Total trait space steadily increased during succession. We observed high small-scale variability in total trait space that was positively correlated with species richness and phylogenetic segregation and negatively correlated with total plant cover. Trait space increased with soil carbonate content, while pH and the fraction of sandy material behaved indifferently. Our results indicate that during early succession, habitat filtering processes gain importance leading to a lesser increase in trait space than expected from the increase in species richness alone. Y1 - 2014 U6 - https://doi.org/10.1093/jpe/rtt048 VL - 7 IS - 4 SP - 321 EP - 329 ER - TY - GEN A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Fischer, Anton A1 - Gerwin, Werner A1 - Nenov, Rossen A1 - Pretzsch, Hans A1 - Seifert, Stefan A1 - Winter, Susanne A1 - Zaplata, Markus K. T1 - Monitoring the formation of structures and patterns during initial development of an artificial catchment T2 - Environmental Monitoring and Assessment N2 - The objective of this paper is to present observations, results from monitoring measurements, and preliminary conclusions about the development of patterns and structures during the first 5 years of development of an artificial catchment starting from point zero. We discuss the high relevance of initial system traits and external events for the system development and draw conclusions for further research. These investigations as part of a Collaborative Research Center, aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying an initial, probably less complex ecosystem. Therefore, intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, vegetation dynamics, water chemistry, and element budgets. During the first 5 years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover, and the unconsolidated sandy substrate. The transformation of the initial geosystem into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared with the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Long-term monitoring of initial ecosystems may provide important data and parameters on processes and the crucial role of spatial and temporal structures and patterns to solve these problems. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed, and defined boundary conditions. KW - ecosystem development Y1 - 2013 U6 - https://doi.org/10.1007/s10661-012-2998-x SN - 0167-6369 VL - Vol. 185 IS - 7 SP - 5965 EP - 5986 ER - TY - GEN A1 - Schaaf, Wolfgang A1 - Elmer, Michael A1 - Fischer, Anton A1 - Gerwin, Werner A1 - Nenov, Rossen A1 - Pretzsch, Hans A1 - Zaplata, Markus K. T1 - Feedbacks between vegetation, surface structures and hydrology during initial development of the artificial catchment 'Chicken Creek' T2 - Procedia Environmental Sciences N2 - Our investigations at the artificial catchment ´Chicken Creek´ in Lusatia/Germany aim to disentangle and understand the feedback mechanisms and interrelationships of processes and their co-development with spatial and temporal structures and patterns by studying this initial, probably less complex ecosystem. Intensive measurements were carried out in the catchment with regard to the development of surface structures, hydrological patterns, and vegetation dynamics. During the first seven years, considerable changes within the catchment were observed. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic and abiotic compartments of the system. Artificially created catchments could be a suitable tool to study these initial developments at the landscape scale under known, designed and defined boundary conditions. Y1 - 2013 U6 - https://doi.org/10.1016/j.proenv.2013.06.010 SN - 1878-0296 VL - 19 SP - 86 EP - 95 ER - TY - GEN A1 - Ulrich, Werner A1 - Piwczynski, Marcin A1 - Zaplata, Markus K. A1 - Winter, Susanne A1 - Schaaf, Wolfgang A1 - Fischer, Anton T1 - Small-scale spatial variability in phylogenetic community structure during early plant succession depends on soil properties T2 - Oecologia N2 - During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors. Y1 - 2014 U6 - https://doi.org/10.1007/s00442-014-2954-2 VL - 175 IS - 3 SP - 985 EP - 995 ER - TY - GEN A1 - Biber, Peter A1 - Seifert, Stefan A1 - Zaplata, Markus K. A1 - Schaaf, Wolfgang A1 - Pretzsch, Hans A1 - Fischer, Anton T1 - Relationships between substrate, surface characteristics, and vegetation in an initial ecosystem T2 - Biogeosciences N2 - We investigated surface and vegetation dynamics in the artificial initial ecosystem “Chicken Creek” (Lusatia, Germany) in the years 2006–2011 across a wide spectrum of empirical data. We scrutinized three overarching hypotheses concerning (1) the relations between initial geomorphological and substrate characteristics with surface structure and terrain properties, (2) the effects of the latter on the occurrence of grouped plant species, and (3) vegetation density effects on terrain surface change. Our data comprise and conflate annual vegetation monitoring results, biennial terrestrial laser scans (starting in 2008), annual groundwater levels, and initially measured soil characteristics. The empirical evidence mostly confirms the hypotheses, revealing statistically significant relations for several goal variables: (1) the surface structure properties, local rill density, local relief energy and terrain surface height change; (2) the cover of different plant groups (annual, herbaceous, grass-like, woody, Fabaceae), and local vegetation height; and (3) terrain surface height change showed significant time-dependent relations with a variable that proxies local plant biomass. Additionally, period specific effects (like a calendar-year optimum effect for the occurrence of Fabaceae) were proven. Further and beyond the hypotheses, our findings on the spatiotemporal dynamics during the system’s early development grasp processes which generally mark the transition from a geo-hydro-system towards a bio-geo-hydro system (weakening geomorphology effects on substrate surface dynamics, while vegetation effects intensify with time), where pure geomorphology or substrate feedbacks are changing into vegetation–substrate feedback processes. Y1 - 2013 U6 - https://doi.org/10.5194/bg-10-8283-2013 VL - 10 SP - 8283 EP - 8303 ER - TY - GEN A1 - Winter, Susanne A1 - Zaplata, Markus K. A1 - Rzanny, Michael A1 - Schaaf, Wolfgang A1 - Fischer, Anton A1 - Ulrich, Werner T1 - Increasing ecological multifunctionality during early plant succession T2 - Plant Ecology N2 - Ecological multifunctionality quantifies the functional performance of various important plant traits and increases with growing structural habitat heterogeneity, number of plant functional traits, and species richness. However, the successional changes in multifunctionality have not been traced so far. We use quantitative plant samples of 1 m2 plots from the first 6 years of initial vegetation dynamics in a German created catchment to infer the temporal changes in plant functional trait space and multifunctionality. Multifunctionality at the plot level was in all study years lower than expected from a random sample of the local pool of potential colonizers and was lowest at intermediate states of succession. In each year species containing a specific set of traits occurred with limited but focused functionality. The observed average low degree of multifunctionality contrasts with recent models predicting a tendency towards maximum multifunctionality during plant community development. However, variability in multifunctionality among plots increased during succession and the respective multifunctionality distribution among plots was increasingly right skewed indicating an excess of plots with relatively high multifunctionality. This relative excess of plots with high multifunctionality might act as an important trigger of community development paving the way for new species and functions to become established. Y1 - 2019 U6 - https://doi.org/10.1007/s11258-019-00930-3 SN - 1573-5052 VL - 220 IS - 4-5 SP - 499 EP - 509 ER -