TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz T1 - Gutzwiller magnetic phase diagram of the undoped $ t- t' -U $ Hubbard model Y1 - 2010 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Bansil, Arun T1 - Short range smectic order driving long range nematic order: example of cuprates T2 - Scientific reports Y1 - 2016 UR - http://www.nature.com/articles/srep19678 U6 - https://doi.org/10.1038/srep19678 SN - 2045-2322 VL - 6 SP - 19678 ER - TY - GEN A1 - Seibold, Götz A1 - Markiewicz, Richard S. A1 - Lorenzana, José T1 - Stripes with Spin Canting in the Three-Band Hubbard Model T2 - Journal of Superconductivity and Novel Magnetism N2 - In underdoped cuprates, both stripes and spiral states may account for the incommensurate spin response observed by elastic neutron scattering experiments. Here, we investigate the respective stability of both textures within the framework of the three-band Hubbard model which we treat within the unrestricted Gutzwiller approximation. Our calculations indicate that for parameter sets appropriate for lanthanum cuprates and small doping nor purely longitudinal stripes nor uniform spirals are stable but stripes with significant spin canting. Indeed at small doping uniform spirals are unstable toward nanoscale phase separation. KW - Stripes KW - Spirals KW - High-temperature superconductors Y1 - 2013 UR - http://link.springer.com/article/10.1007/s10948-012-1701-3 U6 - https://doi.org/10.1007/s10948-012-1701-3 SN - 1557-1939 SN - 1557-1947 VL - 26 IS - 1 SP - 49 EP - 52 ER - TY - GEN A1 - Seibold, Götz A1 - Markiewicz, Richard S. A1 - Lorenzana, José T1 - Magnetic Structure of Electronic Inhomogeneities in Cuprates: Competition between Stripes and Spirals T2 - Acta Physica Polonica A N2 - It is shown that the magnetic structure of high-T c superconductors is strongly influenced by the next-nearest neighbor hopping parameter t' which distinguishes different families of cuprates. Our investigations indicate that uniform spirals get favored by a large t'=t ratio but are unstable at small doping towards stripes with spin canting. For large /t'/t/ spirals can be stabilized under certain conditions in the overdoped regime which may explain the elastic incommensurate magnetic response recently observed in iron-co-doped Bi2201 materials. Y1 - 2012 UR - https://www.researchgate.net/publication/230739012_Magnetic_Structure_of_Electron ic_Inhomogeneities_in_Cuprates_Competition_between_Stripes_and_Spirals SN - 1898-794X VL - 121 IS - 5-6 SP - 1019 EP - 1021 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Bansil, Arun T1 - Competing phases on the cuprates: Charge vs spin order Y1 - 2011 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Seibold, Götz A1 - Lorenzana, José A1 - Bansil, Arun T1 - Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects T2 - New Journal of Physics N2 - Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-Tc compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active at a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-$(\pi ,\pi )$ order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa2Cu3O$_{7-\delta }$ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting. Y1 - 2015 UR - http://iopscience.iop.org/article/10.1088/1367-2630/17/2/023074/meta U6 - https://doi.org/10.1088/1367-2630/17/2/023074 SN - 1367-2630 VL - 17 IS - 2 SP - 023074 ER - TY - GEN A1 - Seibold, Götz A1 - Markiewicz, Richard S. A1 - Lorenzana, José T1 - Spin canting as a result of the competition between stripesand spirals in cuprates Y1 - 2011 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Bansil, Arun T1 - Gutzwiller magnetic phase diagram of the cuprates Y1 - 2010 ER -