TY - GEN A1 - Mirarchi, Giovanni A1 - Grilli, Marco A1 - Seibold, Götz A1 - Caprara, Sergio T1 - The Shrinking Fermi Liquid Scenario for Strange-Metal Behavior from Overdamped Optical Phonons T2 - Condensed Matter N2 - We discuss how the interaction of electrons with an overdamped optical phonon can give rise to a strange-metal behavior over extended temperature and frequency ranges. Although the mode has a finite frequency, an increasing damping shifts spectral weight to progressively lower energies so that despite the ultimate Fermi liquid character of the system at the lowest temperatures and frequencies, the transport and optical properties of the electron system mimic a marginal Fermi liquid behavior. Within this shrinking Fermi liquid scenario, we extensively investigate the electron self-energy in all frequency and temperature ranges, emphasizing similarities and differences with respect to the marginal Fermi liquid scenario. KW - strange-metal behavior KW - marginal Fermi liquid KW - high-temperature cuprate superconductors Y1 - 2024 UR - https://www.mdpi.com/2410-3896/9/1/14 U6 - https://doi.org/10.3390/condmat9010014 SN - 2410-3896 VL - 9 IS - 1 SP - 1 EP - 13 ER - TY - GEN A1 - Seibold, Götz A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto T1 - Non-equilibrium Spin Currents in Systems with Striped Rashba Spin-Orbit Coupling T2 - Journal of Superconductivity and Novel Magnetism N2 - It is shown that non-homogeneity in the spin-orbit coupling (SOC) arising from structure inversion asymmetry gives rise to a finite intrinsic spin Hall conductivity in contrast with the corresponding case of a homogeneous SOC in the disordered two-dimensional electron gas. In particular, we examine the inhomogeneity arising from a striped modulation of the Rashba type spin-orbit coupling. A corresponding structure could be realized at oxide interfaces with periodic top gating or in semiconductor heterostructures. Y1 - 2017 UR - http://link.springer.com/article/10.1007/s10948-016-3774-x U6 - https://doi.org/10.1007/s10948-016-3774-x SN - 1557-1939 VL - 30 IS - 1 SP - 123 EP - 128 ER - TY - GEN A1 - Bucheli, Daniel A1 - Grilli, Marco A1 - Peronaci, F. A1 - Seibold, Götz A1 - Caprara, Sergio T1 - Phase diagrams of voltage-gated oxide interfaces with strong Rashba coupling T2 - Physical Review B N2 - We propose a model for the two-dimensional electron gas formed at the interface of oxide heterostructures that includes a Rashba spin-orbit coupling proportional to an electric field oriented perpendicularly to the interface. Taking into account the electron density dependence of this electric field confining the electron gas at the interface, we report the occurrence of a phase separation instability (signaled by a negative compressibility) for realistic values of the spin-orbit coupling and of the electronic band-structure parameters at zero temperature. We extend the analysis to finite temperatures and in the presence of an in-plane magnetic field, thereby obtaining two phase diagrams that exhibit a phase separation dome. By varying the gating potential, the phase separation dome may shrink and vanish at zero temperature into a quantum critical point where the charge fluctuates dynamically. Similarly, the phase separation may be spoiled by a planar magnetic field even at zero temperature leading to a line of quantum critical points. Y1 - 2014 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.195448 U6 - https://doi.org/10.1103/PhysRevB.89.195448 SN - 2469-9969 VL - 89 ER - TY - GEN A1 - Seibold, Götz A1 - Bucheli, Daniel A1 - Caprara, Sergio A1 - Grilli, Marco T1 - Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems T2 - EPL Europhysics Letters N2 - We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant $g=g(n)$ depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces. Y1 - 2015 UR - http://iopscience.iop.org/article/10.1209/0295-5075/109/17006;jsessionid=34AAE2057398BD7AE51C0C4719FC29DD.c2.iopscience.cld.iop.org U6 - https://doi.org/10.1209/0295-5075/109/17006 SN - 1286-4854 VL - 109 IS - 1 SP - 17006 ER - TY - GEN A1 - Caprara, Sergio A1 - Di Castro, Carlo A1 - Seibold, Götz A1 - Grilli, Marco T1 - Dynamical charge density waves rule the phase diagram of cuprates T2 - Physical Review B N2 - In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line T0CDW of a strongly correlated Fermi liquid to the pseudogap T∗(p) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments. Y1 - 2017 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.224511 U6 - https://doi.org/https://doi.org/10.1103/PhysRevB.95.224511 SN - 2469-9950 SN - 2469-9969 VL - 95 IS - 22 SP - 224511 ER - TY - GEN A1 - Bovenzi, Nicandro A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto A1 - Scopigno, Niccolò A1 - Seibold, Götz T1 - Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces T2 - Journal of Physics and Chemistry of Solids N2 - There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of electron density is accompanied by an inhomogeneous distribution of the (self-consistent) electric field confining the electrons at the interface. In turn this inhomogeneous transverse electric field induces an inhomogeneous Rashba spin-orbit coupling (RSOC). After an introductory summary on two mechanisms possibly giving rise to an electronic phase separation accounting for the above inhomogeneity, we introduce a phenomenological model to describe the density-dependent RSOC and its consequences. Besides being itself a possible source of inhomogeneity or charge-density waves, the density-dependent RSOC gives rise to interesting physical effects like the occurrence of inhomogeneous spin-current distributions and inhomogeneous quantum-Hall states with chiral “edge” states taking place in the bulk of the 2DEG. The inhomogeneous RSOC can also be exploited for spintronic devices since it can be used to produce a disorder-robust spin Hall effect. Y1 - 2017 UR - https://www.sciencedirect.com/science/article/pii/S0022369717305991 SN - 0022-3697 ER - TY - JOUR A1 - Feinberg, D. A1 - Germain, P. A1 - Grilli, Marco A1 - Seibold, Götz T1 - Joint superexchange - Jahn-Teller mechanism for A-typeantiferromagnetism in LaMnO3 Y1 - 1998 ER - TY - GEN A1 - Seibold, Götz A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto T1 - On the Evaluation of the Spin Galvanic Effect in Lattice Models with Rashba Spin-Orbit Coupling T2 - Condensed matter N2 - The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a charge current and has recently attracted renewed interest due to the large conversion efficiency observed in oxide interfaces. An important factor in the SGE theory is disorder which ensures the stationarity of the conversion. Through this paper, we propose a procedure for the evaluation of the SGE on disordered lattices which can also be readily implemented for multiband systems. We demonstrate the performance of the method for a single-band Rashba model and compare our results with those obtained within the self-consistent Born approximation for a continuum model. KW - spintronics KW - spin-galvanic effect KW - lattice models Y1 - 2018 UR - http://www.mdpi.com/2410-3896/3/3/22 U6 - https://doi.org/10.3390/condmat3030022 SN - 2410-3896 VL - 3 IS - 33 SP - 1 EP - 10 ER - TY - JOUR A1 - Seibold, Götz A1 - Grilli, Marco T1 - Theory of isotope dependence of photoemission spectra ofhigh-Tc superconducting cuprates Y1 - 2005 ER -