TY - GEN A1 - Seibold, Götz A1 - Capati, Matteo A1 - Grilli, Marco A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Hidden ferronematic order in underdoped cuprates T2 - Physical Review B N2 - We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order-parameter-like temperature dependence. Y1 - 2013 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.035138 U6 - https://doi.org/10.1103/PhysRevB.87.035138 SN - 2469-9969 VL - 87 IS - 3 SP - 035138 ER - TY - GEN A1 - Seibold, Götz A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto T1 - Theory of the Spin Galvanic Effect at Oxide Interfaces T2 - Physical Review Letters N2 - The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3. Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data. KW - Spin polarization KW - Spin-orbit coupling KW - Spintronics KW - Two-dimensional electron gas Y1 - 2017 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.256801 U6 - https://doi.org/10.1103/PhysRevLett.119.256801 SN - 1092-0145 VL - 119 IS - 25 ER - TY - JOUR A1 - Seibold, Götz A1 - Grilli, Marco T1 - Influence of incommensurate dynamic charge-density wave scatteringon the line shape of superconducting high-Tc cuprates JF - Physical Review B Y1 - 2001 SN - 1550-235X VL - 63 IS - 22 SP - 224505 ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, A. T1 - Dynamics of Electronic Inhomogeneities in Cuprates Y1 - 2011 ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco T1 - Influence of incommensurate dynamic charge-density wave scattering on the line shape of supersonducting high-Tc cuprates T2 - Physical review : B Y1 - 2001 SN - 1098-0121 IS - 22 SP - S. 224505 ER - TY - JOUR A1 - Seibold, Götz A1 - Grilli, Marco T1 - Theory of isotope dependence of photoemission spectra ofhigh-Tc superconducting cuprates Y1 - 2005 ER - TY - GEN A1 - Seibold, Götz A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto T1 - Intrinsic spin Hall effect in systems with striped spin-orbit coupling T2 - epl : a letters journal exploring the frontiers of physics KW - Condensed Matter Y1 - 2015 UR - http://epljournal.edpsciences.org/articles/epl/abs/2015/19/epl17411/epl17411.html U6 - https://doi.org/http://dx.doi.org/10.1209/0295-5075/112/17004 SN - 1286-4854 VL - 112 IS - 1 SP - 17004-p1 EP - 17004-p6 ER - TY - GEN A1 - Seibold, Götz A1 - Caprara, Sergio A1 - Grilli, Marco A1 - Raimondi, Roberto T1 - On the Evaluation of the Spin Galvanic Effect in Lattice Models with Rashba Spin-Orbit Coupling T2 - Condensed matter N2 - The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a charge current and has recently attracted renewed interest due to the large conversion efficiency observed in oxide interfaces. An important factor in the SGE theory is disorder which ensures the stationarity of the conversion. Through this paper, we propose a procedure for the evaluation of the SGE on disordered lattices which can also be readily implemented for multiband systems. We demonstrate the performance of the method for a single-band Rashba model and compare our results with those obtained within the self-consistent Born approximation for a continuum model. KW - spintronics KW - spin-galvanic effect KW - lattice models Y1 - 2018 UR - http://www.mdpi.com/2410-3896/3/3/22 U6 - https://doi.org/10.3390/condmat3030022 SN - 2410-3896 VL - 3 IS - 33 SP - 1 EP - 10 ER - TY - GEN A1 - Caprara, Sergio A1 - Di Castro, Carlo A1 - Seibold, Götz A1 - Grilli, Marco T1 - Dynamical charge density waves rule the phase diagram of cuprates T2 - Physical Review B N2 - In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line T0CDW of a strongly correlated Fermi liquid to the pseudogap T∗(p) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments. Y1 - 2017 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.224511 U6 - https://doi.org/https://doi.org/10.1103/PhysRevB.95.224511 SN - 2469-9950 SN - 2469-9969 VL - 95 IS - 22 SP - 224511 ER - TY - GEN A1 - Bovenzi, Nicolo A1 - Finocchiaro, Francesca A1 - Scopigno, Nicantro A1 - Bucheli, Daniel A1 - Caprara, Sergio A1 - Seibold, Götz A1 - Grilli, Marco T1 - Possible Mechanisms of Electronic Phase Separation in Oxide Interfaces T2 - Journal of Superconductivity and Novel Magnetism N2 - LaAlO 3/SrTiO 3 and LaTiO 3/SrTiO 3 (LXO / STO) interfaces are known to host a strongly inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work, we present three unconventional electronic mechanisms of electronic phase separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide interfaces. Common to all three mechanisms is the dependence of some (interaction) potential on the 2DEGs density. We first consider a mechanism resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we point out that an EPS may also occur in the case of a density-dependent superconducting pairing interaction. Finally, we show that the confinement of the 2DEG to the interface by a density-dependent, self-consistent electrostatic potential can by itself cause an EPS. KW - Oxide interfaces KW - Superconductivity KW - Electronic phase separation Y1 - 2015 UR - http://link.springer.com/article/10.1007/s10948-014-2903-7 U6 - https://doi.org/10.1007/s10948-014-2903-7 SN - 1557-1939 SN - 1557-1947 VL - 28 IS - 4 SP - 1273 EP - 1277 ER - TY - GEN A1 - Caprara, Sergio A1 - Di Castro, Carlo A1 - Mirarchi, Giovanni A1 - Seibold, Götz A1 - Grilli, Marco T1 - Dissipation-driven strange metal behavior T2 - Communications Physics N2 - Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals. KW - Electronic properties and materials KW - Superconducting properties and materials Y1 - 2022 UR - https://www.nature.com/articles/s42005-021-00786-y U6 - https://doi.org/10.1038/s42005-021-00786-y SN - 2399-3650 IS - 5 SP - 1 EP - 7 ER - TY - GEN A1 - Seibold, Götz A1 - Arpaia, Riccardo A1 - Ying Ying, Peng A1 - Fumagalli, Roberto A1 - Braicovich, Lucio A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Ghiringhelli, Giacomo Claudio A1 - Caprara, Sergio T1 - Strange metal behaviour from charge density fluctuations in cuprates T2 - Communications Physics N2 - Besides the mechanism responsible for high critical temperature superconductivity, the grand unresolved issue of the cuprates is the occurrence of a strange metallic state above the so-called pseudogap temperature T*. Even though such state has been successfully described within a phenomenological scheme, the so-called Marginal Fermi-Liquid theory, a microscopic explanation is still missing. However, recent resonant X-ray scattering experiments identified a new class of charge density fluctuations characterized by low characteristic energies and short correlation lengths, which are related to the well-known charge density waves. These fluctuations are present over a wide region of the temperature-vs-doping phase diagram and extend well above T*. Here we investigate the consequences of charge density fluctuations on the electron and transport properties and find that they can explain the strange metal phenomenology. Therefore, charge density fluctuations are likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates. KW - Electronic properties and materials KW - Superconducting properties and materials Y1 - 2021 UR - https://www.nature.com/articles/s42005-020-00505-z U6 - https://doi.org/10.1038/s42005-020-00505-z SN - 2399-3650 VL - 4 SP - 1 EP - 6 ER - TY - GEN A1 - Oelsen, E. von A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Grilli, Marco T1 - Phonon renormalization from local and transitive electron-latticecouplings in strongly correlated systems Y1 - 2010 ER - TY - JOUR A1 - Lorenzana, José A1 - Seibold, Götz A1 - Ortix, C. A1 - Grilli, Marco T1 - Competing orders in FeAs layers Y1 - 2008 ER - TY - GEN A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Grilli, Marco A1 - Seibold, Götz T1 - Charge instabilities and electron-phonon interaction in the Hubbard-Holstein model T2 - Physical Review B KW - strongly correlated systems Y1 - 2009 SN - 1550-235X VL - 79 SP - 085101 ER - TY - GEN A1 - Mirarchi, Giovanni A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Caprara, Sergio T1 - The Strange-Metal Behavior of Cuprates T2 - Condensed Matter N2 - Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat. KW - high-temperature superconductors KW - cuprates KW - charge density fluctuations KW - strange metal KW - dynamical quantum criticality Y1 - 2022 UR - https://www.mdpi.com/2410-3896/7/1/29/htm U6 - https://doi.org/10.3390/condmat7010029 SN - 2410-3896 VL - 7 IS - 1 SP - 1 EP - 17 ER - TY - GEN A1 - Seibold, Götz A1 - Becca, Federico A1 - Bucci, F. A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Spectral properties of incommensurate charge-density wave systems Y1 - 2000 ER - TY - JOUR A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Grilli, Marco T1 - Paramagnetic stripes in cuprates: charge inhomogeneity coexisting with large Fermi surfaces Y1 - 2007 ER - TY - GEN A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Spin excitations of ferronematic order in underdoped cuprate superconductors T2 - Scientific reports N2 - High-temperature superconductors exhibit a characteristic hourglass-shaped spectrum of magnetic fluctuations which most likely contribute to the pairing glue in the cuprates. Recent neutron scattering experiments in strongly underdoped compounds have revealed a significant low energy anisotropy of these fluctuations which we explain by a model in which topological defects of the antiferromagnet clump to producing domain wall segments with ferronematic order. This state does not invoke global charge order but breaks C4 rotational and inversion symmetry. The incommensurability of the low doping charge-disordered state is in good agreement with experiment and interpolates smoothly with the incommensurability of the stripe phase at higher doping. Within linear spin-wave theory the dynamic structure factor is in very good agreement with inelastic neutron scattering data and can account for the observed energy dependent anisotropy. Y1 - 2014 UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060504/ U6 - https://doi.org/10.1038/srep05319 SN - 2045-2322 IS - 4 SP - 5319 ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, José T1 - Stripes in cuprate superconductors: Excitations and dynamic dichotomy T2 - Physica C: Superconductivity N2 - We present a short account of the present experimental situation of stripes in cuprates followed by a review of our present understanding of their ground state and excited state properties. Collective modes, the dynamical structure factor, and the optical conductivity of stripes are computed using the time-dependent Gutzwiller approximation applied to realistic one band and three band Hubbard models, and are found to be in excellent agreement with experiment. On the other hand, experiments like angle-resolved photoemission and scanning tunneling microscopy show the coexistence of stripes at high energies with Fermi liquid quasiparticles at low energies. We show that a phenomenological model going beyond mean-field can reconcile this dynamic dichotomy. Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S0921453412001864 U6 - https://doi.org/10.1016/j.physc.2012.03.072 SN - 0921-4534 VL - 481 SP - 132 EP - 145 ER -