TY - GEN A1 - Shapovalov, Oleg A1 - Ost, Lucas A1 - Kuke, Felix A1 - Doynov, Nikolay A1 - Ambrosio, Marcello A1 - Seidlitz, Holger A1 - Michailov, Vesselin T1 - Entwicklung und Analyse einer Fügestrategie für FKV/Metall-Mischverbindungen auf Basis der CMT-Pinschweißtechnik T2 - Joining Plastics N2 - Dieser Beitrag stellt eine Entwicklung, Anpassung und Untersuchung der neuartigen Pinschweißtechnik zur Verbindung thermoplastischer Faserkunststoffverbunde mit metallischen Fügepartnern dar. Die untersuchte Fügetechnik bietet, im Vergleich zu anderen Verfahren, neben einer einseitigen Zugänglichkeit, ein hohes Leichtbaupotenzial. An Multimaterial-Einzelpinverbindungen wurden die CMT-Pinschweißbarkeit charakterisiert und unterschiedliche Fügestrategien erprobt und ausgewertet. Als Bewertungskriterien wurden das Schweißgut sowie der Faser- und Matrixerhalt in Abhängigkeit von den Schweißparametern untersucht. Die mechanische Beanspruchbarkeit der mit dem entwickelten Verfahren erstellten Verbindungen wurde in Scherzugversuchen ermittelt. An Mehrpinverbindungen wurde anschließend der Einfluss der Pinanordnung untersucht und die Auslegung der Fügezone analysiert. Der Fügeprozess wurde an Funktionsmustern und diese wiederum in 3-Punkt-Biegeversuchen validiert sowie mit dem Kleben verglichen. Y1 - 2023 UR - https://www.joining-plastics.info/artikel/entwicklung-und-analyse-einer-fuegestrategie-fuer-fkvmetall-mischverbindungen-auf-basis-der-cmt-pinschweisstechnik SN - 1864-3450 VL - 17 IS - 1 SP - 28 EP - 35 ER - TY - GEN A1 - Seidlitz, Holger A1 - Michailov, Vesselin A1 - Ost, Lucas A1 - Kuke, Felix A1 - Ambrosio, Marcello A1 - Shapovalov, Oleg A1 - Doynov, Nikolay T1 - Simulation of Composites’ Heating T2 - Kunststoffe international N2 - Modern material-compatible joining methods for fiber-reinforced plastics require the heating of the materials. In order to predict the respective complex temperature fields and curves, the Fraunhofer IAP and the BTU Cottbus-Senftenberg have developed numerical methods, which are able to simulate different radiation sources and process sequences as well. KW - Composites KW - Simulation KW - Joining of Fiber-Reinforced Plastic Composites Y1 - 2023 UR - https://epaper.kunststoffe.de/en/read/26/26/2023-05-26/1 SN - 1862-4243 VL - 113 IS - 4 SP - 60 EP - 64 ER - TY - GEN A1 - Santhanakrishnan Balakrishnan, Venkateswaran A1 - Seidlitz, Holger A1 - Ambrosio, Marcello A1 - Schuhmann, Tilo T1 - Study on the Quality of Quasi-Isotropic Composite Laminates Containing a Circular Hole T2 - Journal of Materials Science Research N2 - Composite structures used in modern engineering applications are often subjected to circular holes in order to join with metal components via riveting, bolting or pinning joints. These design based holes will interrupt the force flux in the direction of the fibers and create high stress concentrations near the notched area. Objective of the project is to understand the quality of the quasi-isotropic composite laminates ([45°, -45°, 0°, 90°]S) containing circular hole. To achieve this objective, a 3-phase portal milling machine and a 5kW continuous wave (cw) CO2 laser system were used to produce the circular holes in the composite laminates. The processing parameters for both the processes are varied to understand its influence. The quality of the circular hole produced by these methods are further investigated and compared in order to arrive at the optimum processing parameters for the given quasi-isotropic composite laminates. The hole qualities were evaluated by means of delamination factor caused by milling; cone angle, matrix evaporation for cw-CO2 laser system. For further comparisons, the optimal parameter combinations of both methods were selected for a tensile test according to the standard ASTM D5766-2002. KW - circular hole KW - composite KW - CO2 laser KW - drilling KW - fiber reinforced polymer KW - FRP KW - notch Y1 - 2017 U6 - https://doi.org/10.5539/jmsr.v6n4p67 SN - 1927-0593 SN - 1927-0585 VL - 6 IS - 4 SP - 67 EP - 78 ER - TY - GEN A1 - Shapovalov, Oleg A1 - Seidlitz, Holger A1 - Ost, Lucas A1 - Doynov, Nikolay A1 - Kuke, Felix A1 - Ambrosio, Marcello A1 - Michailov, Vesselin T1 - Substitution von metallischen Schubfeldern im Fahrzeugbau durch fügetechnische Integration von FKV-Schalen T2 - DVS Congress 2022, Große Schweißtechnische Tagung, DVS Campus ; Kurzfassungen der Vorträge der Veranstaltung in Koblenz vom 19. bis 21. September 2022 ; (Langfassungen der Beiträge auf USB-Karte) N2 - Durch den strukturellen Einsatz von Faser-Kunststoff-Verbunden (FKV) lassen sich hochwertige gewichtsoptimierte Karosserien in Mischbauweise umsetzen. Die untersuchte CMT-Pin-Schweißtechnik zur Verbindung von thermoplastischen Organoblechen mit Stählen bietet, im Vergleich zu anderen Verfahren, neben einer einseitigen Zugänglichkeit, ein hohes Leichtbaupotenzial. Das Vorhaben wurde auf eine werkstoff-, prozess- und konstruktionsgerechte Umsetzung des Verfahrens ausgerichtet. Auf Basis experimenteller und numerischer Untersuchungen wurde eine Methode zum Vorwärmen von Organoblechen mittels Infrarotstrahlung entwickelt. Die Eignung der CMT-Pin-Technologie wurde sowohl für das Fügen von karbon- als auch glasfaserverstärktem PA6 betrachtet. Als Bewertungskriterien wurden das Schweißgut sowie der Faser- und Matrixerhalt in Abhängigkeit der Schweißparameter untersucht. Das entwickelte Verfahren wurde mit herkömmlichen Fügemethoden bzgl. der in Kopf- und Scherzugversuchen ermittelten Festigkeiten verglichen. Zur Bestimmung der Beständigkeit der Verbindungen gegen unterschiedliche Witterungsbedingungen wurden Salzsprühnebel- und Wechselkorrosionstests durchgeführt. Mit dem Fügen von Hutprofilen wurde die Anwendung der entwickelte CMT-Pin-Technik am Tunnel sowie den Längs- und Querträgern der Bodenstruktur eines Kraftfahrzeugs demonstriert. Y1 - 2022 UR - https://www.dvs-ev.de/call4papers/abstract.cfm?vid=115&pid=7586 SN - 978-3-96144-189-1 SP - 385 EP - 393 PB - DVS Media GmbH CY - Düsseldorf ER - TY - GEN A1 - Seidlitz, Holger A1 - Fritzsche, Sebastian A1 - Kloshek, Alexander A1 - Ambrosio, Marcello T1 - Advanced welding technology for highly stressable multi material designs with fiber-reinforced plastics and metals T2 - Open Journal of Composite Materials N2 - Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good damping characteristics and recycling capabilities, while being able to show a higher energy absorption capacity than comparable metal constructions. Nowadays, multi-material designs are an established way in the automotive industry to combine the benefits of metal and fiber-reinforced plastics. Currently used technologies for the joining of organic sheets and metals in large-scale production are mechanical joining technologies and adhesive technologies. Both techniques require large overlapping areas that are not required in the design of the part. Additionally, mechanical joining is usually combined with “fiber-destroying” pre-drilling and punching processes. This will disturb the force flux at the joining location by causing unwanted fiber- and inter-fiber failure and inducing critical notch stresses. Therefore, the multi-material design with fiber-reinforced thermoplastics and metals needs optimized joining techniques that don’t interrupt the force flux, so that higher loads can be induced and the full benefit of the FRP material can be used. This article focuses on the characterization of a new joining technology, based on the Cold Metal Transfer (CMT) welding process that allows joining of organic sheets and metals in a load path optimized way, with short cycle times. This is achieved by redirecting the fibers around the joining area by the insertion of a thin metal pin. The path of the fibers will be similar to paths of fibers inside structures found in nature, e.g. a knothole inside of a tree. As a result of the bionic fiber design of the joint, high joining strengths can be achieved. The increase of the joint strength compared to blind riveting was performed and proven with stainless steel and orthotropic reinforced composites in shear-tests based on the DIN EN ISO 14273. Every specimen joined with the new CMT Pin joining technology showed a higher strength than specimens joined with one blind rivet. Specimens joined with two or three pin rows show a higher strength than specimens joined with two blind rivets. KW - Multi-Material Design KW - Fiber Reinforced Plastics KW - Lightweight Automotive Structures Y1 - 2017 UR - https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=77822 U6 - https://doi.org/10.4236/ojcm.2017.73010 SN - 2164-5655 SN - 2164 -5612 VL - 7 IS - 3 SP - 166 EP - 177 ER - TY - GEN A1 - Seidlitz, Holger A1 - Ost, Lucas A1 - Ambrosio, Marcello A1 - Kuke, Felix A1 - Michailov, Vesselin A1 - Shapovalov, Oleg A1 - Doynov, Nikolay T1 - Erwärmung von Composites simulieren T2 - Kunststoffe N2 - Neuartige, werkstoffgerechte Fügeverfahren für Faserkunststoffverbunde setzen die Erwärmung der Materialien voraus. Um die damit verbundenen komplexen Temperaturfelder und -verläufe vorherzusagen, haben das Fraunhofer IAP und die BTU Cottbus-Senftenberg numerische Verfahren entwickelt. Mit diesen können auch verschiedene Strahlungsquellen und Prozessabläufe simuliert werden. KW - Faserkunststoffverbunde KW - Fügen KW - Simulation Y1 - 2023 UR - https://www.kunststoffe.de/a/article-3363044 SN - 0023-5563 IS - 2 SP - 66 EP - 70 ER - TY - GEN A1 - Hannan, Azmin Nasrin A1 - Seidlitz, Holger A1 - Hartung, David A1 - Kuke, Felix A1 - Ambrosio, Marcello A1 - Müller, Marco T1 - Sustainability and Circular Economy in Carbon Fiber-Reinforced Plastics T2 - Materials Circular Economy N2 - Carbon fiber-reinforced plastic (CFRP) components are known for their exceptional resilience and ultra-lightweight nature, making them the preferred choice for applications requiring high mechanical loads with minimal weight. However, the intricate and anisotropic structure of CFRP components poses challenges, resulting in expensive repairs and testing. This complexity also leads to increased waste generation. Yet, innovative recycling processes offer a solution by reintegrating carbon components into a closed material cycle, promoting sustainability and circular economy principles. This work focuses on recycled CFs (rCFs) obtained through a continuous recycling method for CFRP primary recyclate from composite pressure vessel. Furthermore, re-purposing of the separated matrix material for secondary energy sources makes the process, a 100% recycling route. This closed-loop approach addresses conventional pyrolysis challenges and contributes to more efficient utilization of CFRP waste components. rCF and recycled polyethylene terephthalate (rPET) polymers were compounded through an extrusion process. Test specimens were then fabricated according to standard test norms to evaluate the resulting tensile and bending properties. The tensile and flexural modulus of the rCF-rPET obtained are 6.80 and 4.99 GPa, respectively. The need for enhancing the quality of rCF is apparent. Suggestive and potential implications and the marketability of rCF-rPET compounds are also discussed. KW - Sustainability KW - Circular Economy KW - Carbon Fiber-Reinforced Plastics Y1 - 2024 U6 - https://doi.org/10.1007/s42824-024-00111-2 SN - 2524-8146 VL - 6 IS - 1 PB - Springer Science and Business Media LLC ER -