TY - GEN A1 - Steinbrecht, Susanne A1 - Kiebist, Jan A1 - König, Rosalie A1 - Thiessen, Markus A1 - Schmidtke, Kai-Uwe A1 - Kammerer, Sarah A1 - Küpper, Jan-Heiner A1 - Scheibner, Katrin T1 - Synthesis of cyclophosphamide metabolites by a peroxygenase from Marasmius rotula for toxicological studies on human cancer cells T2 - AMB Express N2 - Cyclophosphamide (CPA) represents a widely used anti-cancer prodrug that is converted by liver cytochrome P450 (CYP) enzymes into the primary metabolite 4-hydroxycyclophosphamide (4-OH-CPA), followed by non-enzymatic generation of the bioactive metabolites phosphoramide mustard and acrolein. The use of human drug metabolites as authentic standards to evaluate their toxicity is essential for drug development. However, the chemical synthesis of 4-OH-CPA is complex and leads to only low yields and undesired side products. In past years, fungal unspecific peroxygenases (UPOs) have raised to powerful biocatalysts. They can exert the identical selective oxyfunctionalization of organic compounds and drugs as known for CYP enzymes with hydrogen peroxide being used as sole cosubstrate. Herein, we report the efficient enzymatic hydroxylation of CPA using the unspecific peroxygenase from Marasmius rotula (MroUPO) in a simple reaction design. Depending on the conditions used the primary liver metabolite 4-OH-CPA, its tautomer aldophosphamide (APA) and the overoxidized product 4-ketocyclophosphamide (4-keto-CPA) could be obtained. Using a kinetically controlled approach 4-OH-CPA was isolated with a yield of 32% (purity > 97.6%). Two human cancer cell lines (HepG2 and MCF-7) were treated with purified 4-OH-CPA produced by MroUPO (4-OH-CPAUPO). 4-OH-CPAUPO–induced cytotoxicity as measured by a luminescent cell viability assay and its genotoxicity as measured by γH2AX foci formation was not significantly different to the commercially available standard. The high yield of 4-OH-CPAUPO and its biological activity demonstrate that UPOs can be efficiently used to produce CYP-specific drug metabolites for pharmacological assessment. KW - Biocatalysis KW - Cyclophosphamide KW - Human drug metabolites KW - Peroxygenase KW - Toxicity Y1 - 2020 UR - https://amb-express.springeropen.com/articles/10.1186/s13568-020-01064-w U6 - https://doi.org/10.1186/s13568-020-01064-w SN - 2191-0855 VL - 10 ER - TY - PAT A1 - Scheibner, Katrin A1 - Kiebist, Jan A1 - Schmidtke, Kai-Uwe A1 - Küpper, Jan-Heiner T1 - Verfahren zur enzymatischen Herstellung von zytostatischen 4-Hydroxy-Oxazaphosphorinen“ Y1 - 2020 UR - https://www.b-tu.de/enzymtechnologie/publikationen/patente ER - TY - PAT A1 - Poraj-Kobielska, Marzena A1 - Scheibner, Katrin A1 - Gröbe, Glenn A1 - Kiebist, Jan A1 - Grün, Manfred A1 - Ullrich, René A1 - Hofrichter, Martin T1 - Verfahren zur Deacylierung von Corticoiden Y1 - 2014 ER - TY - GEN A1 - Kiebist, Jan A1 - Holla, Wolfgang A1 - Heidrich, Johannes A1 - Poraj-Kobielska, Marzena A1 - Sandvoss, Martin A1 - Simonis, Reiner A1 - Gröbe, Glenn A1 - Atzrodt, Jens A1 - Hofrichter, Martin A1 - Scheibner, Katrin T1 - One-pot synthesis of human metabolites of SAR548304 by fungal peroxygenases T2 - Bioorganic & Medicinal Chemistry N2 - Unspecific peroxygenases (UPOs, EC 1.11.2.1) have proved to be stable oxygen-transferring biocatalysts for H2O2-dependent transformation of pharmaceuticals. We have applied UPOs in a drug development program and consider the enzymatic approach in parallel to a conventional chemical synthesis of the human metabolites of the bile acid reabsorption inhibitor SAR548304. Chemical preparation of N,N-di-desmethyl metabolite was realized by a seven-step synthesis starting from a late precursor of SAR548304 and included among others palladium catalysis and laborious chromatographic purification with an overall yield of 27%. The enzymatic approach revealed that the UPO of Marasmius rotula is particularly suitable for selective N-dealkylation of the drug and enabled us to prepare both human metabolites via one-pot conversion with an overall yield of 66% N,N-di-desmethyl metabolite and 49% of N-mono-desmethylated compound in two separated kinetic-controlled reactions. KW - Peroxgenase Y1 - 2015 UR - http://www.sciencedirect.com/science/article/pii/S0968089615005295 U6 - https://doi.org/10.1016/j.bmc.2015.06.035 SN - 0968-0896 VL - 23 IS - 15 SP - 4324 EP - 4332 ER - TY - GEN A1 - Kiebist, Jan A1 - Schmidtke, Kai-Uwe A1 - Zimmermann, Jörg A1 - Kellner, Harald A1 - Jehmlich, Nico A1 - Ullrich, René A1 - Zänder, Daniel A1 - Hofrichter, Martin A1 - Scheibner, Katrin T1 - A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone T2 - ChemBioChem N2 - Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates including less activated hydrocarbons by transferring peroxide-borne oxygen. Herein, we investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule of testosterone by a novel unspecific peroxygenase that was produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass of 36 kDa and specific activities of 4.4 to 12 U mg-1. Whereas well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with up to 7,000 total turnovers (TTN) into two oxygenated products: the 4,5-epoxide of testosterone in β-configuration and 16α-hydroxytestosterone. The reaction was performed at 100-mg scale resulting in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, which both could be isolated with purities above 96 %. Thus, CglUPO may be a promising biocatalyst for the oxyfunctionalization of bulky steroids and provide a useful tool for the synthesis of pharmaceutically relevant steroidal molecules. KW - peroxidase KW - hydroxylation Y1 - 2017 UR - http://onlinelibrary.wiley.com/doi/10.1002/cbic.201600677/abstract U6 - https://doi.org/10.1002/cbic.201600677 SN - 1439-7633 VL - 18 IS - 6 SP - 563 EP - 569 ER - TY - GEN A1 - Olmedo, Andrés A1 - Aranda, Carmen A1 - Rio, José C. del A1 - Kiebist, Jan A1 - Scheibner, Katrin A1 - Martínez, Angel T. A1 - Gutiérrez, Ana T1 - From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase T2 - Angewandte Chemie International Edition N2 - A new heme–thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position—a challenging reaction in organic chemistry—with H2O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC–MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of 18O from the cosubstrate H218O2, demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids. KW - Peroxyenase Y1 - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/anie.201605430/abstract U6 - https://doi.org/10.1002/anie.201605430 SN - 1521-3773 VL - 55 IS - 40 SP - 12248 EP - 12251 ER - TY - GEN A1 - Olmedo, Andrés A1 - Río, José C. del A1 - Kiebist, Jan A1 - Ullrich, René A1 - Hofrichter, Martin A1 - Scheibner, Katrin A1 - Martínez, Angel T. A1 - Gutiérrez, Ana T1 - Fatty Acid Chain Shortening by a Fungal Peroxygenase T2 - Chemistry A European Journal N2 - A recently discovered peroxygenase from the fungus Marasmius rotula (MroUPO) is able to catalyze the progressive one-carbon shortening of medium and longchain mono- and dicarboxylic acids by itself alone, in the presence of H₂O₂. The mechanism, analyzed using H₂O, starts with an a-oxidation catalyzed by MroUPO generat- ing an α-hydroxy acid, which is further oxidized by the enzyme to a reactive α-keto intermediate whose decarboxylation yields the one-carbon shorter fatty acid. Compared with the previously characterized peroxygenase of Agrocybe aegerita, a wider heme access channel, enabling fatty acid positioning with the carboxylic end near the heme cofactor (as seen in one of the crystal structures available) could be at the origin of the unique ability of MroUPO shortening carboxylic acid chains. KW - Peroxygenase Y1 - 2017 U6 - https://doi.org/10.1002/chem.201704773 SN - 1521-3765 SN - 0947-6539 VL - 23 SP - 16989 EP - 67 ER - TY - GEN A1 - Aranda, Carmen A1 - Olmedo, Andrés A1 - Kiebist, Jan A1 - Scheibner, Katrin A1 - Río, José C. del A1 - Martínez, Angel T. A1 - Gutiérrez, Ana T1 - Selective Epoxidation of Fatty Acids and Fatty Acid Methyl Esters by Fungal Peroxygenases T2 - CHEMCATCHEM N2 - Recently discovered fungal unspecific peroxygenases from Marasmius rotula and Chaetomium globosum catalyze the epoxidation of unsaturated fatty acids (FA) and FA methyl esters (FAME), unlike the well‐known peroxygenases from Agrocybe aegerita and Coprinopsis cinerea. Reactions of a series of unsaturated FA and FAME with cis‐configuration revealed high (up to 100 %) substrate conversion and selectivity towards epoxidation, although some significant differences were observed between enzymes and substrates with the best results being obtained with the C. globosum enzyme. This and the M. rotula peroxygenase appear as promising biocatalysts for the environmentally‐friendly production of reactive FA epoxides given their self‐sufficient monooxygenase activity and the high conversion rate and epoxidation selectivity. KW - Peroxygenase Y1 - 2018 U6 - https://doi.org/10.1002/cctc.201800849 SN - 1867-3899 VL - 10 IS - 18 SP - 3964 EP - 3968 ER - TY - GEN A1 - Kiebist, Jan A1 - Koncz, Tino A1 - Friedrich, Stephanie A1 - Scheibner, Katrin T1 - Oxidative biocatalysts to design new oxyfunctionalization tools for drugs and added value bio-based products T2 - International Biotech Innovation Days 2020 (IBID), 28th – 29th October 2020 KW - Peroxygenase Y1 - 2020 UR - https://www.b-tu.de/ibid/program#c243720 CY - Senftenberg ER - TY - GEN A1 - Scheibner, Katrin A1 - Ullrich, René A1 - Kiebist, Jan A1 - Kellner, Harald A1 - Hofrichter, Martin T1 - Unspezifische Peroxygenasen - Oxyfunktionalisierung außerhalb der Pilzhyphe T2 - Biospektrum KW - Peroxygenase Y1 - 2020 U6 - https://doi.org/10.1007/s12268-020-1338-x SN - 1868-6249 SN - 0947-0867 VL - 26 IS - 1 SP - 103 EP - 106 ER -