TY - GEN A1 - Schöneich, Michael A1 - Hohmann, Andrea A1 - Schmidt, Peer A1 - Pielnhofer, Florian A1 - Bachhuber, Frederik A1 - Weihrich, Richard A1 - Osters, Oliver A1 - Köpf, Marianne A1 - Nilges, Tom T1 - Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization T2 - Zeitschrift für Kristallographie - Crystalline Materials N2 - The application of the EnPhaSyn (theoretical Energy diagrams, experimental Phase formation, Synthesis and characterisation) concept is reviewed with respect to prediction of structures and stability of element allotropes and compound polymorphs, their phase formation and transition processes, and their directed synthesis, respectively. Therein, the relative energetical stability (En) of target compounds and possible decomposition are determined from quantum chemical DFT calculations. Phase formation and transition (Pha) is probed by a gas balance method, developed as high temperature gas balance concept. It helped to study the synthesis and stability range of several compounds experimentally. Applications of the concept and synthesis principles (Syn) of non-equilibrium phases are presented for allotropes of P, As, P1-xAsx, as well as binary and ternary compounds including the Zintl and Laves like phases IrPTe, NiP2, CoSbS, NiBiSe, Li0.2CdP2, Cu3CdCuP10, and Cd4Cu7As. KW - Arsenic KW - Phosporus KW - DFT KW - energy diagram KW - polymorph structure Y1 - 2017 UR - https://www.degruyter.com/view/j/zkri.ahead-of-print/zkri-2016-1966/zkri-2016-1966.xml U6 - https://doi.org/10.1515/zkri-2016-1966 SN - 2194-4946 VL - 232 IS - 1-3 SP - 91 EP - 105 ER - TY - GEN A1 - Schmidt, Peer A1 - Hohmann, Andrea A1 - Nilges, Tom A1 - Köpf, Marianne A1 - Weihrich, Richard T1 - Synthesis of Element Allotropes of Arsenic and Phosphorus by Application of Electromotive Series of Solids T2 - Zeitschrift für Anorganische und Allgemeine Chemie N2 - Calculation of electromotive series of solids allows easy prediction of reaction pathways[1]. Using the electromotive series of systems As-P-O and As-P-X (X = F, Cl, Br, I) the formation of element allotropes via the oxide and halide compounds in thermite type reactions can be deduced: phosphorous will reduce the arsenic oxides to elemental arsenic, forming grey or black allotrope, depending on reaction mixture composition. KW - Element allotropes KW - Arsenic KW - Phosphorus Y1 - 2014 UR - http://onlinelibrary.wiley.com/doi/10.1002/zaac.201490026/full U6 - https://doi.org/10.1002/zaac.201490026 SN - 1521-3749 VL - 640 IS - 11 SP - 2386 ER -