TY - GEN A1 - Klein, Marten A1 - Starick, Tommy A1 - Zenker, Christian A1 - Medina Méndez, Juan Alí A1 - Schmidt, Heiko T1 - Reduced order stochastic modeling of turbulent mixing based on conservative baker’s maps T2 - Proceedings of the 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM-14) N2 - The detailed numerical representation of turbulent mixing processes is a standing challenge for non-premixed chemically reacting flows. The full range of relevant flow scales needs to be captured and it is also necessary to distinguish turbulent advective from molecular diffusive processes in order to represent Reynolds and Schmidt number effects. These requirements are addressed here by utilizing two different map-based stochastic turbulence modeling strategies. The one-dimensional turbulence (ODT) model utilizes event-based turbulence modeling, whereas the hierarchical parcel-swapping (HiPS) model is a fully event-based mixing model. ODT provides full-scale resolution at affordable costs by dimensional model reduction based on the boundary-layer approximation to shear flow. HiPS is far less costly than ODT but currently limited to locally homogeneous isotropic turbulence. The physics-compatible modeling capabilities with respect to phase-space representation of turbulent mixing are demonstrated for two canonical cases using standalone model formulations. KW - turbulent mixing KW - one-dimensional turbulence (ODT) KW - hierarchical parcel swapping (HiPS) KW - stochastic turbulence modeling KW - round jet KW - passive scalar Y1 - 2023 UR - https://etmm.ercoftac.org/etmm/program/conference-program/ UR - https://drive.google.com/file/d/1q2BDOO5bXfqq0Y4z4HCGndiFI033bPyg/view?usp=drive_link SP - 613 EP - 618 PB - ERCOFTAC CY - Barcelona, Spain ER - TY - CHAP A1 - Medina Méndez, Juan Ali A1 - Glawe, Christoph A1 - Starick, Tommy A1 - Schöps, Mark Simon A1 - Schmidt, Heiko T1 - IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows T2 - 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics February 18-22, 2019 Vienna, Austria, Abstract book Y1 - 2019 UR - https://jahrestagung.gamm-ev.de/images/2019/Photos/GAMM2019_BookofAbstracts.pdf SN - 978-3-903024-84-7 PB - TU-Verlag CY - Wien ER - TY - CHAP A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence simulations for reactive flows in open and closed systems T2 - Conference on Modelling Fluid Flow (CMFF’18), The 17th International Conference on Fluid Flow Technologies Budapest, Hungary, September 4-7, 2018 N2 - The One-Dimensional Turbulence (ODT) model is applied to reactive flows in open and closed systems represented by a lifted jet flame in a vitiated coflow, and a constant volume autoignition configuration, respectively. ODT is a one-dimensional model for turbulent flow simulations, which uses a stochastic formulation to represent the effcts of turbulent advection. Diffusion and reaction effcts along the ODT domain are considered by deterministic evolution equations. This work is an effort to verify the applicability and effiency of the model for open and closed systems. In the open system case, ODT results are compared against experimental results of a lifted methane/air jet flame detailed in the work of Cabra et al. [1]. In the closed system case, a periodic, constant volume domain is used to investigate the sensitivity of the ignition evolution to initial temperature and composition inhomogeneities of a lean n-heptane/air mixture. In the latter context, ODT results are compared to DNS results from Luong et al. [2]. Results for the jet and constant volume configuration show a reasonable match with the experimental and DNS data, considering the reduced order of the model and the underlying assumptions for each case. At the jet configuration, a dependence of the flame evolution on the turbulence intensity parameter can be seen. For the closed system, initial temperature and composition inhomogeneities allow a mitigation of the undesirable rapid pressure rise. Y1 - 2018 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Starick_2018_cmff_final_after_review.pdf ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Mauß, Fabian A1 - Jozefik, Zoltan T1 - Constant volume n-Heptane autoignition using One-Dimensional Turbulence T2 - Combustion and Flame N2 - Abstract Constant volume premixed lean n-Heptane/air autoignition at high pressure is investigated using the One-Dimensional Turbulence (ODT) model. The configuration consists of a 1D fixed volume domain with a prescribed velocity spectrum and temperature fluctuations superimposed on an initial uniformly elevated scalar field. The sensitivity of the heat release rate and pressure evolution to the initial temperature distribution is studied by imposing different initial temperature fields while holding the mean, RMS and integral length scale of the field constant. Three detailed chemical mechanisms are employed for the prediction of autoignition and heat release rate. To mitigate the high computational cost associated with the calculation of the chemical source terms in the stiff complex mechanisms, an approach based on the Strang-Splitting method is presented. Finally, a … KW - One-Dimensional Turbulence KW - n-Heptane autoignition Y1 - 2018 U6 - https://doi.org/10.1016/j.combustflame.2017.12.015 SN - 0010-2180 VL - 190 SP - 388 EP - 401 ER - TY - GEN A1 - Lignell, David O. A1 - Lansinger, Victoria B. A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Kerstein, Alan R. A1 - Schmidt, Heiko A1 - Fistler, Marco A1 - Oevermann, Michael T1 - One-dimensional turbulence modeling for cylindrical and spherical flows: model formulation and application T2 - Theoretical and Computational Fluid Dynamics N2 - The one-dimensional turbulence (ODT) model resolves a full range of time and length scales and is computationally efficient. ODT has been applied to a wide range of complex multi-scale flows, such as turbulent combustion. Previous ODT comparisons to experimental data have focused mainly on planar flows. Applications to cylindrical flows, such as round jets, have been based on rough analogies, e.g., by exploiting the fortuitous consistency of the similarity scalings of temporally developing planar jets and spatially developing round jets. To obtain a more systematic treatment, a new formulation of the ODT model in cylindrical and spherical coordinates is presented here. The model is written in terms of a geometric factor so that planar, cylindrical, and spherical configurations are represented in the same way. Temporal and spatial versions of the model are presented. A Lagrangian finite-volume implementation is used with a dynamically adaptive mesh. The adaptive mesh facilitates the implementation of cylindrical and spherical versions of the triplet map, which is used to model turbulent advection (eddy events) in the one-dimensional flow coordinate. In cylindrical and spherical coordinates, geometric stretching of the three triplet map images occurs due to the radial dependence of volume, with the stretching being strongest near the centerline. Two triplet map variants, TMA and TMB, are presented. In TMA, the three map images have the same volume, but different radial segment lengths. In TMB, the three map images have the same radial segment lengths, but different segment volumes. Cylindrical results are presented for temporal pipe flow, a spatial nonreacting jet, and a spatial nonreacting jet flame. These results compare very well to direct numerical simulation for the pipe flow, and to experimental data for the jets. The nonreacting jet treatment overpredicts velocity fluctuations near the centerline, due to the geometric stretching of the triplet maps and its effect on the eddy event rate distribution. TMB performs better than TMA. A hybrid planar-TMB (PTMB) approach is also presented, which further improves the results. TMA, TMB, and PTMB are nearly identical in the pipe flow where the key dynamics occur near the wall away from the centerline. The jet flame illustrates effects of variable density and viscosity, including dilatational effects. KW - Cylindrical ODT Y1 - 2018 U6 - https://doi.org/10.1007/s00162-018-0465-1 SN - 0935-4964 SN - 1432-2250 VL - 32 IS - 4 SP - 495 EP - 520 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Fistler, Marco A1 - Oevermann, Michael A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Economical map-based turbulence models: Developments and perspectives for the numerical analysis of electrostatic precipitation T2 - Book of Abstracts PARTEC International Congress on Particle Technology, September 26-28, 2023, Nürnberg Y1 - 2023 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Medina_2023_Extended Abstract_Template_PARTEC_ODT.pdf SP - 634 EP - 638 PB - VDI Verlag GmbH CY - Düsseldorf ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Schmidt, Heiko T1 - Investigating dissipative roughness effects on turbulent drag using a stochastic turbulence model T2 - 18th European Turbulence Conference (ETC18), 4-6 September 2023, Valencia Y1 - 2023 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Medina_2023_Abstract_ETC18_Roughness.pdf CY - Valencia ER - TY - GEN A1 - Klein, Marten A1 - Medina Méndez, Juan Alí A1 - Schmidt, Heiko ED - Vad, Janos T1 - Modeling electrohydrodynamically enhanced drag in channel and pipe flows using One-Dimensional Turbulenc T2 - Proceedings of the Conference on Modelling Fluid Flow (CMFF’22) N2 - The joint modeling of flow hydrodynamics and electrokinetics is a relatively unexplored area of turbulent flow research. We address a lack of available models for electrohydrodynamic (EHD) turbulent flow utilizing a lower-order approach, the stochastic One-Dimensional Turbulence (ODT) model. ODT is constructed on the principles of the direct energy cascade of Navier–Stokes turbulence, with key emphasis on the accurate resolution of the small molecular transport scales within a notional line-of-sight. We investigate two canonical flow configurations to demonstrate the applicability of the model in the simulation of EHD flows. First, we investigate EHD effects in zero-pressure-gradient turbulent boundary layers by two-way coupled model application to plane Couette flow of a dilute electrolyte. Second, we apply the one-way coupled model to EHD-enhanced gas flow through a vertical pipe with an inner concentric electrode, where electric fields are generated by means of a corona discharge and the corresponding effect of a continuum ionic charge density field. KW - EHD turbulence KW - multiphysical boundary layers KW - one-dimensional turbulence KW - stochastic modeling KW - turbulent drag enhancement Y1 - 2022 UR - https://www.cmff.hu/pdf/CMFF22_Conference_Proceedings.pdf UR - https://www.cmff.hu/papers/CMFF22_Final_Paper_PDF_15.pdf SN - 978-963-421-881-4 SP - 82 EP - 91 PB - University of Technology and Economics, Department of Fluid Mechanics CY - Budapest, Hungary ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Forooghi, Pourya A1 - Freire, Livia S. T1 - Parametric forcing for roughness in turbulent channel flows: reduced order modelling using One-Dimensional Turbulence T2 - EFMC14, 14th European Fluid Mechanics Conference, Athens, Greece, 13-16 September 2022, Book of Abstracts Y1 - 2022 UR - https://www.efmc14.org/EFMC14_ABSTRACT_BOOK.pdf SP - S. 67 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Bacher, Christian A1 - Riebel, Ulrich A1 - Schmidt, Heiko T1 - Electrohydrodynamically-enhanced drag in a vertical pipe-flow with a concentric electrode: A One-Dimensional Turbulence study T2 - European Journal of Mechanics. B,Fluids Y1 - 2022 UR - https://www.sciencedirect.com/science/article/pii/S0997754622000814 U6 - https://doi.org/10.1016/j.euromechflu.2022.05.008 SN - 1873-7390 SN - 0997-7546 VL - 95 SP - 240 EP - 251 ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence simulations for reactive flows in open and closed systems T2 - Technische Mechanik Y1 - 2019 U6 - https://doi.org/10.24352/UB.OVGU-2019-015 VL - 39 IS - 1 SP - 162 EP - 174 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 N2 - The One-Dimensional Turbulence model is modified in this work for its application to a classical electrohydrodynamic (EHD) problem. Being the first study case, this work is focused on the influence of electrostatic fields and space charge on the velocity field inside a wire-plate Electrostatic Precipitator (ESP) with one-way-coupling dynamics. The study case is an attempt to replicate velocity profiles and Turbulent Kinetic Energy (TKE) budgets obtained in the Direct Numerical Simulation (DNS) carried out by Soldati and Banerjee (1998). Qualitative trends are confirmed in preliminary ODT results, thus showing the potential of the stochastic ODT modeling approach for other types of EHD flows. Y1 - 2019 UR - http://www.tsfp-conference.org/proceedings/2019/265.pdf ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Glawe, Christoph A1 - Starick, Tommy A1 - Schöps, Mark Simon A1 - Schmidt, Heiko T1 - IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows T2 - Proceedings in Applied Mathematics and Mechanics N2 - The stochastic One-Dimensional Turbulence (ODT) model is used in combination with a Large Eddy Simulation (LES) approach in order to illustrate the potential of the fully coupled model (ODTLES) for highly turbulent flows. In this work, we use a new C++ implementation of the ODTLES code in order to analyze the computational performance in a classical incompressible turbulent channel flow problem. The parallelization potential of the model, as well as its physical and numerical consistency are evaluated and compared to Direct Numerical Simulations (DNSs). The numerical results show that the model is capable of reproducing a representative part of the DNS data at a cheaper computational cost. This advantage can be enhanced in the future by the implementation of a straightforward parallelization approach. Y1 - 2019 U6 - https://doi.org/10.1002/pamm.201900433 SN - 1617-7061 VL - 19 IS - 1 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Bacher, Christian A1 - Riebel, Ulrich T1 - Electrohydrodynamic‐enhanced internal pipe flows from a One‐Dimensional Turbulence perspective T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) Y1 - 2020 U6 - https://doi.org/10.1002/pamm.202000132 VL - 20 IS - 1 PB - Wiley ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Towards a dynamic model adaptive combustion closure using LEM, ODT, and HiPS T2 - 17th International Conference on Numerical Combustion, May 6-8, 2019, Aachen, Germany, Book of Abstracts N2 - The computational cost of Direct Numerical Simulations (DNS) that resolve all scales rises with the cube of the Reynolds numberand is currently not feasible for real world applications. Large Eddy Simulations (LES) overcome this limitation by only resolving the large scale effects and completely model the small scaleeffects. This results in a strong dependence of the accuracy onthe chosen subgrid-scale model. The model adaptivity concept discussed in [Schmidt et al., ICDERS, 2007] dynamically uses different Linear Eddy Model (LEM) types [Kerstein, LEM, 1988] for stochastic closure to model the turbulent flame speed of apremixed flame within LES. In the talk, we will first summarize the progress of our group on One Dimensional Turbulence (ODT) [Kerstein, ODT, 1999] and Hierarchical Parcel Swapping (HiPS) [Kerstein, HiPS, 2013] based on reactive stand-alone simulations, [Jozefik et al., Combust. Flame, 2015] [Jozefik et al., Combust. Flame, 2016] [Medina et al., Combust. Flame, 2018]. Second,we will sketch a possible combination of the model adaptivity concept [Schmidt et al., ICDERS, 2007] and recent efficient ODTLES implementations [Glawe et al., Z. Angew. Math. Mech.,2018] to dynamically use LEM, ODT and HIPS together inside ofLES solvers to simulate turbulent reactive flows. Y1 - 2019 UR - https://nc19.itv.rwth-aachen.de/bookOfAbstracts.pdf SP - 143 EP - 144 CY - Aachen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Application of the One-Dimensional Turbulence model for the evaluation of collection efficiencies in wire-tube electrostatic precipitators T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2021 Kassel, Germany, Book of Abstracts Y1 - 2021 UR - https://hessenbox.uni-kassel.de/dl/fiUVgdpGYRwJeGzRN2jt5n2o/bookofabstracts2021.pdf?inline SP - 360 EP - 361 PB - Universität Kassel CY - Kassel ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Freire, Livia S. A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence in channels with rough walls T2 - Jahresbericht 2021 zum 20. STAB-Workshop 16.-17. November 2021 Göttingen Y1 - 2021 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/STAB-Jahresbericht-2021.pdf VL - 2021 SP - 108 EP - 109 PB - Deutsche Strömungsmechanische Arbeitsgemeinschaft, STAB CY - Göttingen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 Y1 - 2019 UR - http://tsfp11.org/openconf/modules/request.php?module=oc_program&action=view.php&id=265&type=3&a= ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Jozefik, Zoltan A1 - Schmidt, Heiko T1 - Zur jüngsten Entwicklung in der Modellierung von turbulenten Verbrennungsprozessen mittels ODT Y1 - 2019 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Starick_2019_Flammentag19_Starick_Poster.pdf ER - TY - GEN A1 - Klein, Marten A1 - Medina Méndez, Juan Alí A1 - Schmidt, Heiko T1 - Stochastic modeling of electrohydrodynamically enhanced drag in one-way and fully coupled turbulent Poiseuille and Couette flow T2 - Technische Mechanik N2 - Joint predictive modeling of hydrodynamics and electrokinetics is a standing numerical challenge but crucial for various applications in electrochemistry and power engineering. The present lack in modeling of electrohydrodynamic (EHD) turbulent flows lies in the treatment of small-scale processes and scale interactions. To overcome these limitations, a stochastic one-dimensional turbulence (ODT) model is utilized. The model aims to resolve all scales of the flow, but only on a notional line-of-sight, modeling turbulent advection by a stochastically sampled sequence of eddy events that punctuate deterministic molecular diffusive advancement. In this study, two canonical flow configurations are investigated that address different coupling strategies and flow physics. First, EHD effects in a variable-density vertical pipe flow of an ideal gas with an inner concentric electrode are investigated with a one-way coupled model formulation. Electric fields are generated by means of a corona discharge and the corresponding effect of a fixed ionic charge density field. Second, in order to reduce physical complexity, EHD effects the turbulent boundary layers in plane Couette flow of an isothermal univalent ionic liquid are investigated with a fully coupled model formulation. Both application cases demonstrate that ODT has predictive capabilities due to multiscale resolution of transport processes. Present results suggest that more expensive fully than one-way coupling of electrokinetics is crucial when charge relaxation times are significantly larger than the mean advection time scale. KW - turbulent drag enhancement KW - electrohydrodynamic turbulence KW - high Schmidt number KW - multiphysical boundary layers KW - one-dimensional turbulence Y1 - 2023 U6 - https://doi.org/10.24352/UB.OVGU-2023-049 SN - 0232-3869 N1 - This article is part of the "Special Issue for CMFF’22". VL - 43 IS - 1 SP - 111 EP - 127 ER -