TY - GEN A1 - Medina Méndez, Juan Ali A1 - Bacher, Christian A1 - Riebel, Ulrich A1 - Schmidt, Heiko T1 - Electrohydrodynamically-enhanced drag in a vertical pipe-flow with a concentric electrode: A One-Dimensional Turbulence study T2 - European Journal of Mechanics. B,Fluids Y1 - 2022 UR - https://www.sciencedirect.com/science/article/pii/S0997754622000814 U6 - https://doi.org/10.1016/j.euromechflu.2022.05.008 SN - 1873-7390 SN - 0997-7546 VL - 95 SP - 240 EP - 251 ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence simulations for reactive flows in open and closed systems T2 - Technische Mechanik Y1 - 2019 U6 - https://doi.org/10.24352/UB.OVGU-2019-015 VL - 39 IS - 1 SP - 162 EP - 174 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 N2 - The One-Dimensional Turbulence model is modified in this work for its application to a classical electrohydrodynamic (EHD) problem. Being the first study case, this work is focused on the influence of electrostatic fields and space charge on the velocity field inside a wire-plate Electrostatic Precipitator (ESP) with one-way-coupling dynamics. The study case is an attempt to replicate velocity profiles and Turbulent Kinetic Energy (TKE) budgets obtained in the Direct Numerical Simulation (DNS) carried out by Soldati and Banerjee (1998). Qualitative trends are confirmed in preliminary ODT results, thus showing the potential of the stochastic ODT modeling approach for other types of EHD flows. Y1 - 2019 UR - http://www.tsfp-conference.org/proceedings/2019/265.pdf ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Glawe, Christoph A1 - Starick, Tommy A1 - Schöps, Mark Simon A1 - Schmidt, Heiko T1 - IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows T2 - Proceedings in Applied Mathematics and Mechanics N2 - The stochastic One-Dimensional Turbulence (ODT) model is used in combination with a Large Eddy Simulation (LES) approach in order to illustrate the potential of the fully coupled model (ODTLES) for highly turbulent flows. In this work, we use a new C++ implementation of the ODTLES code in order to analyze the computational performance in a classical incompressible turbulent channel flow problem. The parallelization potential of the model, as well as its physical and numerical consistency are evaluated and compared to Direct Numerical Simulations (DNSs). The numerical results show that the model is capable of reproducing a representative part of the DNS data at a cheaper computational cost. This advantage can be enhanced in the future by the implementation of a straightforward parallelization approach. Y1 - 2019 U6 - https://doi.org/10.1002/pamm.201900433 SN - 1617-7061 VL - 19 IS - 1 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Bacher, Christian A1 - Riebel, Ulrich T1 - Electrohydrodynamic‐enhanced internal pipe flows from a One‐Dimensional Turbulence perspective T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) Y1 - 2020 U6 - https://doi.org/10.1002/pamm.202000132 VL - 20 IS - 1 PB - Wiley ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Towards a dynamic model adaptive combustion closure using LEM, ODT, and HiPS T2 - 17th International Conference on Numerical Combustion, May 6-8, 2019, Aachen, Germany, Book of Abstracts N2 - The computational cost of Direct Numerical Simulations (DNS) that resolve all scales rises with the cube of the Reynolds numberand is currently not feasible for real world applications. Large Eddy Simulations (LES) overcome this limitation by only resolving the large scale effects and completely model the small scaleeffects. This results in a strong dependence of the accuracy onthe chosen subgrid-scale model. The model adaptivity concept discussed in [Schmidt et al., ICDERS, 2007] dynamically uses different Linear Eddy Model (LEM) types [Kerstein, LEM, 1988] for stochastic closure to model the turbulent flame speed of apremixed flame within LES. In the talk, we will first summarize the progress of our group on One Dimensional Turbulence (ODT) [Kerstein, ODT, 1999] and Hierarchical Parcel Swapping (HiPS) [Kerstein, HiPS, 2013] based on reactive stand-alone simulations, [Jozefik et al., Combust. Flame, 2015] [Jozefik et al., Combust. Flame, 2016] [Medina et al., Combust. Flame, 2018]. Second,we will sketch a possible combination of the model adaptivity concept [Schmidt et al., ICDERS, 2007] and recent efficient ODTLES implementations [Glawe et al., Z. Angew. Math. Mech.,2018] to dynamically use LEM, ODT and HIPS together inside ofLES solvers to simulate turbulent reactive flows. Y1 - 2019 UR - https://nc19.itv.rwth-aachen.de/bookOfAbstracts.pdf SP - 143 EP - 144 CY - Aachen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Application of the One-Dimensional Turbulence model for the evaluation of collection efficiencies in wire-tube electrostatic precipitators T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2021 Kassel, Germany, Book of Abstracts Y1 - 2021 UR - https://hessenbox.uni-kassel.de/dl/fiUVgdpGYRwJeGzRN2jt5n2o/bookofabstracts2021.pdf?inline SP - 360 EP - 361 PB - Universität Kassel CY - Kassel ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Freire, Livia S. A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence in channels with rough walls T2 - Jahresbericht 2021 zum 20. STAB-Workshop 16.-17. November 2021 Göttingen Y1 - 2021 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/STAB-Jahresbericht-2021.pdf VL - 2021 SP - 108 EP - 109 PB - Deutsche Strömungsmechanische Arbeitsgemeinschaft, STAB CY - Göttingen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 Y1 - 2019 UR - http://tsfp11.org/openconf/modules/request.php?module=oc_program&action=view.php&id=265&type=3&a= ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Jozefik, Zoltan A1 - Schmidt, Heiko T1 - Zur jüngsten Entwicklung in der Modellierung von turbulenten Verbrennungsprozessen mittels ODT Y1 - 2019 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Starick_2019_Flammentag19_Starick_Poster.pdf ER -