TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence simulations for reactive flows in open and closed systems T2 - Technische Mechanik Y1 - 2019 U6 - https://doi.org/10.24352/UB.OVGU-2019-015 VL - 39 IS - 1 SP - 162 EP - 174 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 N2 - The One-Dimensional Turbulence model is modified in this work for its application to a classical electrohydrodynamic (EHD) problem. Being the first study case, this work is focused on the influence of electrostatic fields and space charge on the velocity field inside a wire-plate Electrostatic Precipitator (ESP) with one-way-coupling dynamics. The study case is an attempt to replicate velocity profiles and Turbulent Kinetic Energy (TKE) budgets obtained in the Direct Numerical Simulation (DNS) carried out by Soldati and Banerjee (1998). Qualitative trends are confirmed in preliminary ODT results, thus showing the potential of the stochastic ODT modeling approach for other types of EHD flows. Y1 - 2019 UR - http://www.tsfp-conference.org/proceedings/2019/265.pdf ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Glawe, Christoph A1 - Starick, Tommy A1 - Schöps, Mark Simon A1 - Schmidt, Heiko T1 - IMEX-ODTLES: A multi-scale and stochastic approach for highly turbulent flows T2 - Proceedings in Applied Mathematics and Mechanics N2 - The stochastic One-Dimensional Turbulence (ODT) model is used in combination with a Large Eddy Simulation (LES) approach in order to illustrate the potential of the fully coupled model (ODTLES) for highly turbulent flows. In this work, we use a new C++ implementation of the ODTLES code in order to analyze the computational performance in a classical incompressible turbulent channel flow problem. The parallelization potential of the model, as well as its physical and numerical consistency are evaluated and compared to Direct Numerical Simulations (DNSs). The numerical results show that the model is capable of reproducing a representative part of the DNS data at a cheaper computational cost. This advantage can be enhanced in the future by the implementation of a straightforward parallelization approach. Y1 - 2019 U6 - https://doi.org/10.1002/pamm.201900433 SN - 1617-7061 VL - 19 IS - 1 ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Bacher, Christian A1 - Riebel, Ulrich T1 - Electrohydrodynamic‐enhanced internal pipe flows from a One‐Dimensional Turbulence perspective T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) Y1 - 2020 U6 - https://doi.org/10.1002/pamm.202000132 VL - 20 IS - 1 PB - Wiley ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Towards a dynamic model adaptive combustion closure using LEM, ODT, and HiPS T2 - 17th International Conference on Numerical Combustion, May 6-8, 2019, Aachen, Germany, Book of Abstracts N2 - The computational cost of Direct Numerical Simulations (DNS) that resolve all scales rises with the cube of the Reynolds numberand is currently not feasible for real world applications. Large Eddy Simulations (LES) overcome this limitation by only resolving the large scale effects and completely model the small scaleeffects. This results in a strong dependence of the accuracy onthe chosen subgrid-scale model. The model adaptivity concept discussed in [Schmidt et al., ICDERS, 2007] dynamically uses different Linear Eddy Model (LEM) types [Kerstein, LEM, 1988] for stochastic closure to model the turbulent flame speed of apremixed flame within LES. In the talk, we will first summarize the progress of our group on One Dimensional Turbulence (ODT) [Kerstein, ODT, 1999] and Hierarchical Parcel Swapping (HiPS) [Kerstein, HiPS, 2013] based on reactive stand-alone simulations, [Jozefik et al., Combust. Flame, 2015] [Jozefik et al., Combust. Flame, 2016] [Medina et al., Combust. Flame, 2018]. Second,we will sketch a possible combination of the model adaptivity concept [Schmidt et al., ICDERS, 2007] and recent efficient ODTLES implementations [Glawe et al., Z. Angew. Math. Mech.,2018] to dynamically use LEM, ODT and HIPS together inside ofLES solvers to simulate turbulent reactive flows. Y1 - 2019 UR - https://nc19.itv.rwth-aachen.de/bookOfAbstracts.pdf SP - 143 EP - 144 CY - Aachen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - Application of the One-Dimensional Turbulence model for the evaluation of collection efficiencies in wire-tube electrostatic precipitators T2 - 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics March 15-19, 2021 Kassel, Germany, Book of Abstracts Y1 - 2021 UR - https://hessenbox.uni-kassel.de/dl/fiUVgdpGYRwJeGzRN2jt5n2o/bookofabstracts2021.pdf?inline SP - 360 EP - 361 PB - Universität Kassel CY - Kassel ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Freire, Livia S. A1 - Schmidt, Heiko T1 - One-Dimensional Turbulence in channels with rough walls T2 - Jahresbericht 2021 zum 20. STAB-Workshop 16.-17. November 2021 Göttingen Y1 - 2021 UR - https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/STAB-Jahresbericht-2021.pdf VL - 2021 SP - 108 EP - 109 PB - Deutsche Strömungsmechanische Arbeitsgemeinschaft, STAB CY - Göttingen ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Riebel, Ulrich T1 - Towards a One-Dimensional Turbulence Approach for Electrohydrodynamic Flows T2 - 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019 Y1 - 2019 UR - http://tsfp11.org/openconf/modules/request.php?module=oc_program&action=view.php&id=265&type=3&a= ER - TY - GEN A1 - Starick, Tommy A1 - Medina Méndez, Juan Ali A1 - Klein, Marten A1 - Jozefik, Zoltan A1 - Schmidt, Heiko T1 - Zur jüngsten Entwicklung in der Modellierung von turbulenten Verbrennungsprozessen mittels ODT Y1 - 2019 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Starick_2019_Flammentag19_Starick_Poster.pdf ER - TY - GEN A1 - Klein, Marten A1 - Medina Méndez, Juan Alí A1 - Schmidt, Heiko T1 - Stochastic modeling of electrohydrodynamically enhanced drag in one-way and fully coupled turbulent Poiseuille and Couette flow T2 - Technische Mechanik N2 - Joint predictive modeling of hydrodynamics and electrokinetics is a standing numerical challenge but crucial for various applications in electrochemistry and power engineering. The present lack in modeling of electrohydrodynamic (EHD) turbulent flows lies in the treatment of small-scale processes and scale interactions. To overcome these limitations, a stochastic one-dimensional turbulence (ODT) model is utilized. The model aims to resolve all scales of the flow, but only on a notional line-of-sight, modeling turbulent advection by a stochastically sampled sequence of eddy events that punctuate deterministic molecular diffusive advancement. In this study, two canonical flow configurations are investigated that address different coupling strategies and flow physics. First, EHD effects in a variable-density vertical pipe flow of an ideal gas with an inner concentric electrode are investigated with a one-way coupled model formulation. Electric fields are generated by means of a corona discharge and the corresponding effect of a fixed ionic charge density field. Second, in order to reduce physical complexity, EHD effects the turbulent boundary layers in plane Couette flow of an isothermal univalent ionic liquid are investigated with a fully coupled model formulation. Both application cases demonstrate that ODT has predictive capabilities due to multiscale resolution of transport processes. Present results suggest that more expensive fully than one-way coupling of electrokinetics is crucial when charge relaxation times are significantly larger than the mean advection time scale. KW - turbulent drag enhancement KW - electrohydrodynamic turbulence KW - high Schmidt number KW - multiphysical boundary layers KW - one-dimensional turbulence Y1 - 2023 U6 - https://doi.org/10.24352/UB.OVGU-2023-049 SN - 0232-3869 N1 - This article is part of the "Special Issue for CMFF’22". VL - 43 IS - 1 SP - 111 EP - 127 ER - TY - GEN A1 - Sharma, Dikshant A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko A1 - Cremer, Tilman T1 - Seasonal cold storage with borehole heat exchangers: an application study using numerical simulations T2 - Tagungsband des Jahrestreffens der DECHEMA-Fachgruppen Computational Fluid Dynamics und Wärme- und Stoffübertragung, 6.-8. März 2023, Frankfurt am Main, Deutschland Y1 - 2023 UR - https://www-docs.b-tu.de/fg-stroemungsmodellierung/public/Sharma_2023_Seasonal_Cold_Storage_BHE.pdf SP - 18 EP - 19 PB - DECHEMA e.V. CY - Frankfurt am Main ER - TY - GEN A1 - Medina Méndez, Juan Alí A1 - Sharma, Sparsh A1 - Schmidt, Heiko A1 - Klein, Marten T1 - Towards the use of a reduced order and stochastic turbulence model for assessment of far-field sound radiation: low Mach number jet flows T2 - Book of Abstracts of the 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics KW - turbulent noise sources KW - reduced-order modeling KW - one-dimensional turbulence KW - turbulent jet KW - stochastic modeling and simulation Y1 - 2023 UR - https://jahrestagung.gamm-ev.de/wp-content/uploads/2023/05/20230517_BookofAbstracts_final_red.pdf SP - 413 EP - 414 PB - GAMM e.V. CY - Dresden ER - TY - GEN A1 - Medina Méndez, Juan Ali A1 - Sharma, Sparsh A1 - Schmidt, Heiko A1 - Klein, Marten T1 - Toward the use of a reduced-order and stochastic turbulence model for assessment of far-field sound radiation: Low Mach number jet flows T2 - Proceedings in Applied Mathematics and Mechanics Y1 - 2023 U6 - https://doi.org/10.1002/pamm.202300186 SN - 1617-7061 VL - 23 IS - 3 ER - TY - GEN A1 - Rakhi, Rakhi A1 - Klein, Marten A1 - Medina Méndez, Juan Ali A1 - Schmidt, Heiko T1 - One-dimensional turbulence modelling of incompressible temporally developing turbulent boundary layers with comparison to DNS T2 - Journal of Turbulence N2 - The incompressible temporally developing turbulent boundary layer (TBL) is analysed using the map-based stochastic one-dimensional turbulence (ODT) model. The TBL is a canonical flow problem, which is, in the present study, formed by a planar moving wall and a free stream at rest. An understanding of this idealised flow is of fundamental relevance for the numerical analysis of turbulent boundary-layer-type flows. In the present ODT simulations, the flow variables are resolved on all scales along a wall-normal, one-dimensional domain. These variables are evolved by a deterministic and a stochastic process. The latter models the effect of turbulent advection and pressure fluctuations, whereas the former represents molecular diffusion. The model is appropriate for high Reynolds numbers for which the turbulence field exhibits a broad range of scales and is notionally featureless. We show that ODT is able to capture salient features of the TBL by comparing the various statistics with available reference direct numerical simulation (DNS) results for different bulk Reynolds numbers in the range 250 ≤ Reb ≤ 2000 using fixed model parameters. The influence of the model parameters is analysed for Reb = 1000 and optimal parameter values are provided. The results discussed in this paper suggest that ODT is an economical and reasonably accurate approach for the simulation of transient turbulent boundary-layer-type flows. KW - one-dimensional turbulence KW - stochastic modeling KW - turbulent boundary layers Y1 - 2019 U6 - https://doi.org/10.1080/14685248.2019.1674859 SN - 1468-5248 VL - 20 IS - 8 SP - 506 EP - 543 ER -