TY - GEN A1 - Mai, Christian A1 - Marschmeyer, Steffen A1 - Peczek, Anna A1 - Kroh, Aleksandra A1 - Jose, Josmy A1 - Reiter, Sebastian A1 - Fischer, Inga Anita A1 - Wenger, Christian A1 - Mai, Andreas T1 - Integration Aspects of Plasmonic TiN-based Nano-Hole-Arrays on Ge Photodetectorsin a 200mm Wafer CMOS Compatible Silicon Technology T2 - ECS Transactions N2 - In this work we present the progress in regard to the integration of a surface plasmon resonance refractive index sensor into a CMOS compatible 200 mm wafer silicon-based technology. Our approach pursues the combination of germanium photodetectors with metallic nanohole arrays. The paper is focused on the technology development to fabricate large area photodetectors based on a modern design concept. In a first iteration we achieved a leakage current density of 82 mA/cm2 at reverse bias of 0.5 V and a maximum optical responsivity of 0.103 A/W measured with TE polarized light at λ = 1310 nm and a reversed bias of 1 V. For the realization of nanohole arrays we used thin Titanium nitride (TiN) layers deposited by a sputtering process. We were able to produce very homogenous TiN layers with a thickness deviation of around 10 % and RMS of 1.413 nm for 150 nm thick TiN layers. KW - plasmonics KW - nanohole array KW - germanium detector Y1 - 2022 U6 - https://doi.org/10.1149/10904.0035ecst SN - 1938-5862 VL - 109 IS - 4 SP - 35 EP - 46 ER - TY - GEN A1 - Han, Weijia A1 - Reiter, Sebastian A1 - Schlipf, Jon A1 - Mai, Christian A1 - Spirito, Davide A1 - Jose, Josmy A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Strongly enhanced sensitivities of CMOS compatible plasmonic titanium nitride nanohole arrays for refractive index sensing under oblique incidence T2 - Optics Express N2 - Titanium nitride (TiN) is a complementary metal-oxide-semiconductor (CMOS) compatible material with large potential for the fabrication of plasmonic structures suited for device integration. However, the comparatively large optical losses can be detrimental for application. This work reports a CMOS compatible TiN nanohole array (NHA) on top of a multilayer stack for potential use in integrated refractive index sensing with high sensitivities at wavelengths between 800 and 1500 nm. The stack, consisting of the TiN NHA on a silicon dioxide (SiO2) layer with Si as substrate (TiN NHA/SiO2/Si), is prepared using an industrial CMOS compatible process. The TiN NHA/SiO2/Si shows Fano resonances in reflectance spectra under oblique excitation, which are well reproduced by simulation using both finite difference time domain (FDTD) and rigorous coupled-wave analysis (RCWA) methods. The sensitivities derived from spectroscopic characterizations increase with the increasing incident angle and match well with the simulated sensitivities. Our systematic simulation-based investigation of the sensitivity of the TiN NHA/SiO2/Si stack under varied conditions reveals that very large sensitivities up to 2305 nm per refractive index unit (nm RIU−1) are predicted when the refractive index of superstrate is similar to that of the SiO2 layer. We analyze in detail how the interplay between plasmonic and photonic resonances such as surface plasmon polaritons (SPPs), localized surface plasmon resonances (LSPRs), Rayleigh Anomalies (RAs), and photonic microcavity modes (Fabry-Pérot resonances) contributes to this result. This work not only reveals the tunability of TiN nanostructures for plasmonic applications but also paves the way to explore efficient devices for sensing in broad conditions. KW - TiN KW - Plasmonics Y1 - 2023 U6 - https://doi.org/10.1364/OE.481993 SN - 1094-4087 VL - 31 IS - 11 SP - 17389 EP - 17407 ER - TY - GEN A1 - Reiter, Sebastian A1 - Han, Weijia A1 - Mai, Christian A1 - Spirito, Davide A1 - Jose, Josmy A1 - Zöllner, Marvin Hartwig A1 - Fursenko, Oksana A1 - Schubert, Markus Andreas A1 - Stemmler, Ivo A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties T2 - Plasmonics Y1 - 2023 U6 - https://doi.org/10.1007/s11468-023-01810-3 SN - 1557-1963 SP - 1 EP - 13 ER -