TY - GEN A1 - Ghosh, Sujoy Kumar A1 - Sinha, Tridib Kumar A1 - Xie, Mengying A1 - Bowen, Christopher Rhys A1 - Garain, Samiran A1 - Mahanty, Biswajit A1 - Roy, Krittish A1 - Henkel, Karsten A1 - Schmeißer, Dieter A1 - Kim, Jin Kuk A1 - Mandal, Dipankar T1 - Temperature–Pressure Hybrid Sensing All-Organic Stretchable Energy Harvester T2 - ACS Applied Electronic Materials N2 - The design and development of intrinsically stretchable all-organic self-powered sensors concurrently perceiving temperature and pressure remain a challenge but deliver an exciting platform to realize environmentally friendly wearable electronics. In this approach, a biomimetic all-organic stretchable energy harvester is designed by a xylitol-added poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS/Xyl) film as a compatible overlay electrode with polyaniline-reinforced one-dimensional aligned poly(vinylidene fluoride) hybrid electroactive soft nanowires. The gradient of elastic modulus between the electrode and the active nanowire component enables the all-organic device to manifest excellent power-generating performance under external temperature fluctuation (∼3 μW/m2 under ΔT ∼ 92 K) and mechanical force (∼31 μW/cm2 at 30 N). Importantly, the device renders simultaneous energy scavenging of temperature and pressure changes under pressing and stretching conditions (∼20%). The excellent mechanosensitivity (∼100 mV/N), fast response time (∼1 ms), outstanding mechanical and thermal stability, and good temperature resolution <10 K enable the harvester to act as an epidermal sensor, which simultaneously detects and discriminates both subtle pressure and thermal deviations exposed to an epidermis surface. The real-time recording and wireless transferring of physiological signals to a smartphone indicate an effective way to realize remote healthcare monitoring for early intervention. KW - all-organic KW - piezoelectric KW - pyroelectric KW - energy harvester KW - sensor KW - healthcare monitoring Y1 - 2021 U6 - https://doi.org/10.1021/acsaelm.0c00816 SN - 2637-6113 VL - 3 IS - 1 SP - 248 EP - 259 ER - TY - GEN A1 - Park, Haryn A1 - Lee, Joowha A1 - Kim, Jin-Kuk A1 - Dorneanu, Bogdan A1 - Arellano-Garcia, Harvey T1 - Pathways to industrial decarbonization : renewable energy integration and electrified hydrogen production T2 - Jahrestreffen der DECHEMA/VDI-Fachgruppe Fluidverfahrenstechnik 2025 N2 - Industrial sectors contribute substantially to global CO2 emissions, emphasizing the need for low-carbon, reliable energy supplies to meet operational demands. Achieving net-zero emissions in industrial processes involves transitioning from fossil fuels to renewable energy sources. However, the intermittent nature of renewables poses challenges to energy reliability and resilience, particularly in utility systems. This contribution addresses industrial decarbonisation and sustainable hydrogen production by developing a comprehensive design and optimization framework for integrating renewable energy systems into industrial operations. This framework incorporates energy storage and grid connections to improve flexibility and stability and is evaluated through two case studies. Both case studies analyse the operational and configurational changes necessary for renewable-powered hydrogen production, estimating the cost of hydrogen or CO2 avoidance cost to analyse economic viability. These insights provide guidelines for sustainable and economically viable energy management in industrial and hydrogen production sectors, supporting broader global energy transition goals. Y1 - 2025 UR - https://www.researchgate.net/publication/388846958_Pathways_to_industrial_decarbonization_Renewable_energy_integration_and_electrified_hydrogen_production ER - TY - GEN A1 - Park, Haryn A1 - Lee, Joowha A1 - Dorneanu, Bogdan A1 - Arellano-Garcia, Harvey A1 - Kim, Jin-Kuk T1 - Cost-effective process design and optimization for decarbonized utility systems integrated with renewable energy and carbon capture systems T2 - Systems and control transactions N2 - Industrial decarbonization is considered one of the key objectives in mitigating global climate change. To achieve a net-zero industry requires actively transitioning from fossil fuel-based energy sources to renewable alternatives. However, the intermittent nature of renewable energy sources poses challenges to a reliable and robust supply of energy for industrial sites. Therefore, the integration of renewable energy systems with existing industrial processes, subject to energy storage solutions and main grid interconnections, is essential to enhance operational reliability and overall energy resilience. This study proposes a novel framework for the design and optimization of industrial utility systems integrated with renewable energy sources. A monthly-based analysis is adopted to consider variable demand and non-constant availability in renewable energy supply. Moreover, carbon capture is considered in this work as a viable decarbonization measure, which can be strategically combined with renewable-based electrification. The proposed optimization model evaluates the economic trade-offs of integrating carbon capture, renewable energy, and energy storage. By applying this approach, systematic design guidelines are developed for the transition of a conventional steady-state utility system toward renewable energy integration, ensuring economically viable and sustainable energy management in process industries. KW - Renewable energy KW - CO2 capture KW - Industrial utility operation KW - Cost optimization KW - Process integration Y1 - 2025 SN - 978-1-7779403-3-1 U6 - https://doi.org/10.69997/sct.107403 SN - 2818-4734 VL - 4 SP - 1175 EP - 1180 PB - PSE Press CY - Notre Dame, IN ER - TY - GEN A1 - Lee, Joohwa A1 - Park, Haryn A1 - Dorneanu, Bogdan A1 - Kim, Jin-Kuk A1 - Arellano-Garcia, Harvey T1 - Decarbonized hydrogen production : integrating renewable energy into electrified SMR process with CO₂ capture T2 - Systems and control transactions N2 - Electrified steam methane reforming has emerged as a promising technology for electrifying the hydrogen production process industries. Unlike conventional fossil fuel-based steam methane reforming, the electrified steam methane reforming process relies exclusively on electrical heating, eliminating the need for fossil fuel combustion. Beyond that, however, significant amounts of electricity required for the electrified process should be imported from the renewable energy-based system rather than fossil fuel-based grid electricity to have an environmental advantage over the conventional process. This study suggests a framework for integrating renewable energy systems into the electrified process for decarbonized hydrogen production. Considering the variability of renewable energy, wind and solar power are supplemented by battery storage, to facilitate a stable electricity supply to the electrified hydrogen production process. A Mixed-Integer Linear Programming (MILP) model is developed to optimally size and operate both the renewable system and potential grid imports. Case studies under various carbon tax scenarios, using historical weather data from a region in Germany, are conducted, followed by a techno-economic assessment to estimate the Cost of Hydrogen (COH). The results show that higher carbon taxes and reduced capital costs for wind, solar, and storage technologies significantly increase the share of renewable-based electricity. These findings highlight the importance of more stringent carbon taxation and improvements in the technology readiness level (TRL) of renewable energy are critical for accelerating large-scale, clean hydrogen production and industrial decarbonization. KW - Hydrogen KW - Renewable energy KW - Electrification Y1 - 2025 SN - 978-1-7779403-3-1 U6 - https://doi.org/10.69997/sct.152295 SN - 2818-4734 VL - 4 SP - 613 EP - 618 PB - PSE Press CY - Notre Dame, IN ER -