TY - GEN A1 - Picerno, Mario A1 - Lee, Sung-Yong A1 - Pasternak, Michal A1 - Siddareddy, Reddy Babu A1 - Franken, Tim A1 - Mauß, Fabian A1 - Andert, Jakob T1 - Real-Time Emission Prediction with Detailed Chemistry under Transient Conditions for Hardware-in-the-Loop Simulations T2 - Energies N2 - The increasing requirements to further reduce pollutant emissions, particularly with regard to the upcoming Euro 7 (EU7) legislation, cause further technical and economic challenges for the development of internal combustion engines. All the emission reduction technologies lead to an increasing complexity not only of the hardware, but also of the control functions to be deployed in engine control units (ECUs). Virtualization has become a necessity in the development process in order to be able to handle the increasing complexity. The virtual development and calibration of ECUs using hardware-in-the-loop (HiL) systems with accurate engine models is an effective method to achieve cost and quality targets. In particular, the selection of the best-practice engine model to fulfil accuracy and time targets is essential to success. In this context, this paper presents a physically- and chemically-based stochastic reactor model (SRM) with tabulated chemistry for the prediction of engine raw emissions for real-time (RT) applications. First, an efficient approach for a time-optimal parametrization of the models in steady-state conditions is developed. The co-simulation of both engine model domains is then established via a functional mock-up interface (FMI) and deployed to a simulation platform. Finally, the proposed RT platform demonstrates its prediction and extrapolation capabilities in transient driving scenarios. A comparative evaluation with engine test dynamometer and vehicle measurement data from worldwide harmonized light vehicles test cycle (WLTC) and real driving emissions (RDE) tests depicts the accuracy of the platform in terms of fuel consumption (within 4% deviation in the WLTC cycle) as well as NOx and soot emissions (both within 20%). KW - hardware-in-the-loop KW - virtual calibration KW - diesel powertrain KW - tabulated chemistry Y1 - 2022 U6 - https://doi.org/10.3390/en15010261 SN - 1996-1073 VL - 15 IS - 1 SP - 1 EP - 21 ER - TY - GEN A1 - Pasternak, Michał A1 - Siddareddy, Reddy Babu A1 - de Syniawa, Larisa León A1 - Guenther, Vivien A1 - Picerno, Mario A1 - Andert, Jakob A1 - Franken, Tim A1 - Mauss, Fabian A1 - Adamczyk, Wojciech T1 - Plant modelling of engine and aftertreatment systems for X-in-the-loop simulations with detailed chemistry T2 - CONAT 2024 International Congress of Automotive and Transport Engineering. N2 - Use of numerical simulations at early stage of engine and aftertreatment systems development helps in evaluating their different concepts and reducing the need for costly building of prototypes. In this work, we explore the feasibility of fully physical and chemical-based tool-chain for co-simulating engine in-cylinder and aftertreatment processes. Detailed gas-phase reaction kinetics and surface chemistry mechanisms are applied for the modeling of combustion, pollutants formation and aftertreatment, respectively. Engine in-cylinder performance parameters are simulated using a stochastic reactor model and multi-component fuel surrogate. The engine model is coupled with an aftertreatment model capable of simulating diesel oxidation catalyst (DOC), selective catalytic reduction catalyst, lean NOx trap, ammonia slip catalyst, and three-way catalyst. Both the engine and aftertreatment models are embedded within the Simulink framework. They work in co-simulation and are coupled using Functional Mock-up Interface (FMI) technology. The coupled framework acts as a virtual test bench that is developed given its application for X-in-the-Loop (XiL) simulations. The framework can be applied to engine steady state or transient operating conditions. Here, exemplary calculations are performed using a Model-in-the-Loop (MiL) approach. Simulations are conducted under transient conditions of Worldwide Harmonized Light Vehicle Test Cycle for a compression ignition engine coupled with a DOC. The presented framework is considered a first step towards complex engine plant modeling using detailed chemistry for the virtualization of the development of engine, fuels and aftertreatment systems. Y1 - 2024 SN - 978-3-031-77626-7 U6 - https://doi.org/10.1007/978-3-031-77627-4_14 SP - 151 EP - 163 PB - Springer Nature Switzerland CY - Cham ER -