TY - GEN A1 - Jahn, Stephan F. A1 - Blaudeck, Thomas A1 - Baumann, Reinhard R. A1 - Jakob, Alexander A1 - Ecorchard, Petra A1 - Rüffer, Tobias A1 - Lang, Heinrich A1 - Schmidt, Peer T1 - Inkjet Printing of Conductive Silver Patterns by Using the First Aqueous Particle-Free MOD Ink without Additional Stabilizing Ligands T2 - Chemistry of Materials N2 - The chemical and physical properties of [AgO2C(CH2OCH2)3H] (3) and its use as an aqueous, ligand-free MOD ink (MOD = metal−organic decomposition) for piezo inkjet printing is discussed. The printed, thermal, or photochemical sintered silver features are electrically conductive on glass (2.7 × 107 S m−1) and PET (PET = polyethylene terephthalate) substrates (1.1 × 107 S m−1) corresponding to 43% and 18% of the bulk silver conductivity. Conducted tape tests show the suitability of the ink for particularly polymer substrates. TG-MS studies demonstrate a two-step decomposition for the conversion of 3 to elemental silver. The structure of 3 in the solid state was determined by single X-ray structure determination. Y1 - 2010 UR - http://pubs.acs.org/doi/abs/10.1021/cm9036428 U6 - https://doi.org/10.1021/cm9036428 SN - 1520-5002 VL - 22 IS - 10 SP - 3067 EP - 3071 ER - TY - GEN A1 - Jahn, Stephan F. A1 - Jakob, Alexander A1 - Blaudeck, Thomas A1 - Schmidt, Peer A1 - Lang, Heinrich A1 - Baumann, Reinhard R. T1 - Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands T2 - Thin Solid Films N2 - The use of silver(I)-2-[2-(2-methoxyethoxy)ethoxy]acetate, [AgO2C(CH2OCH2)3H], and its application as an aqueous metal-organic decomposition (MOD) inkjet ink is reported. The chemical and physical properties of the silver carboxylate and the ink formulated thereof are discussed. The ink meets all requirements of piezo driven inkjet printing. The printed features were converted into electrically conducting silver patterns by thermal or photo-thermal treatment. The conversion of [AgO2C(CH2OCH2)3H] to elemental silver follows a two-step decomposition as demonstrated by thermogravimetry–mass spectrometry (TG–MS) measurements. The measured conductivities of the printed features on glass and polyethylene-terephthalate (PET) are 2.7 × 107 S m−1 and 1.1 × 107 S m−1, respectively, which correspond to 43% (glass) and 18% (PET) of the bulk silver conductivity. KW - Inkjet printing KW - Silver KW - Carboxylate KW - Ethyleneglycol KW - Flexible electronics Y1 - 2010 UR - http://www.sciencedirect.com/science/article/pii/S0040609010000866 U6 - https://doi.org/10.1016/j.tsf.2010.01.030 SN - 0040-6090 VL - 518 IS - 12 SP - 3218 EP - 3222 ER - TY - GEN A1 - Bischoff, Carl A1 - Leise, Jakob A1 - Perez-Bosch Quesada, Emilio A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Kloes, Alexander T1 - Implementation of device-to-device and cycle-to-cycle variability of memristive devices in circuit simulations T2 - Solid-State Electronics N2 - We present a statistical procedure for the extraction of parameters of a compact model for memristive devices. Thereby, in a circuit simulation the typical fluctuations of the current–voltage (I-V) characteristics from device-to-device (D2D) and from cycle-to-cycle (C2C) can be emulated. The approach is based on the Stanford model whose parameters play a key role to integrating D2D and C2C dispersion. The influence of such variabilities over the model’s parameters is investigated by using a fitting algorithm fed with experimental data. After this, the statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of RRAM cells or memristor-based artificial neural networks. KW - RRAM KW - circuit simulation KW - HfO2 Y1 - 2022 U6 - https://doi.org/10.1016/j.sse.2022.108321 SN - 0038-1101 VL - 194 ER - TY - GEN A1 - Kloes, Alexander A1 - Bischoff, Carl A1 - Leise, Jakob A1 - Perez-Bosch Quesada, Emilio A1 - Wenger, Christian A1 - Perez, Eduardo T1 - Stochastic switching of memristors and consideration in circuit simulation T2 - Solid State Electronics N2 - We explore the stochastic switching of oxide-based memristive devices by using the Stanford model for circuit simulation. From measurements, the device-to-device (D2D) and cycle-to-cycle (C2C) statistical variation is extracted. In the low-resistive state (LRS) dispersion by D2D variability is dominant. In the high-resistive state (HRS) C2C dispersion becomes the main source of fluctuation. A statistical procedure for the extraction of parameters of the compact model is presented. Thereby, in a circuit simulation the typical D2D and C2C fluctuations of the current–voltage (I-V) characteristics can be emulated by extracting statistical parameters of key model parameters. The statistical distributions of the parameters are used in a Monte Carlo simulation to reproduce the I-V D2D and C2C dispersions which show a good agreement to the measured curves. The results allow the simulation of the on/off current variation for the design of memory cells or can be used to emulate the synaptic behavior of these devices in artificial neural networks realized by a crossbar array of memristors. KW - RRAM KW - memristive device KW - variability Y1 - 2023 U6 - https://doi.org/10.1016/j.sse.2023.108606 SN - 0038-1101 VL - 201 ER -