TY - GEN A1 - Martinez, Angel T. A1 - Ruiz-Duenas, Francisco J. A1 - Camarero, Susana A1 - Serrano, Ana A1 - Linde, Dolores A1 - Lund, Henrik A1 - Vind, Jesper A1 - Tovborg, Morton A1 - Herold-Majumdar, Owik M. A1 - Hofrichter, Martin A1 - Liers, Christiane A1 - Ullrich, René A1 - Scheibner, Katrin A1 - Sannia, Giovanni A1 - Piscitelli, Alessandra A1 - Sener, Mehmet E. A1 - Kilic, Sibel A1 - Berkel, Willem J. H. van A1 - Guallar, Víctor A1 - Lucas, Maria Fátima A1 - Zuhse, Ralf A1 - Ludwig, Roland A1 - Hollmann, Frank A1 - Fernández-Fueyo, Elena A1 - Record, Eric A1 - Faulds, Craig B. A1 - Tortajada, Marta A1 - Winckelmann, Ib A1 - Rasmussen, Jo-Anne A1 - Gelo-Pujic, Mirjana A1 - Gutiérrez, Ana A1 - Rio, José C. del A1 - Rencoret, Jorge A1 - Alcalde, Miguel T1 - Oxidoreductases on their way to industrial biotransformations T2 - Biotechnology Advances N2 - Fungi produce heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases involved in the biodegradation of lignin and other recalcitrant compounds. Heme peroxidases comprise the classical ligninolytic peroxidases and the new dye-decolorizing peroxidases, while heme peroxygenases belong to a still largely unexplored superfamily of heme-thiolate proteins. Nevertheless, basidiomycete unspecific peroxygenases have the highest biotechnological interest due to their ability to catalyze a variety of regio- and stereo-selective monooxygenation reactions with H2O2 as the source of oxygen and final electron acceptor. Flavo-oxidases are involved in both lignin and cellulose decay generating H2O2 that activates peroxidases and generates hydroxyl radical. The group of copper oxidoreductases also includes other H2O2 generating enzymes - copper-radical oxidases - together with classical laccases that are the oxidoreductases with the largest number of reported applications to date. However, the recently described lytic polysaccharide monooxygenases have attracted the highest attention among copper oxidoreductases, since they are capable of oxidatively breaking down crystalline cellulose, the disintegration of which is still a major bottleneck in lignocellulose biorefineries, along with lignin degradation. Interestingly, some flavin-containing dehydrogenases also play a key role in cellulose breakdown by directly/indirectly “fueling” electrons for polysaccharide monooxygenase activation. Many of the above oxidoreductases have been engineered, combining rational and computational design with directed evolution, to attain the selectivity, catalytic efficiency and stability properties required for their industrial utilization. Indeed, using ad hoc software and current computational capabilities, it is now possible to predict substrate access to the active site in biophysical simulations, and electron transfer efficiency in biochemical simulations, reducing in orders of magnitude the time of experimental work in oxidoreductase screening and engineering. What has been set out above is illustrated by a series of remarkable oxyfunctionalization and oxidation reactions developed in the frame of an intersectorial and multidisciplinary European RTD project. The optimized reactions include enzymatic synthesis of 1-naphthol, 25-hydroxyvitamin D3, drug metabolites, furandicarboxylic acid, indigo and other dyes, and conductive polyaniline, terminal oxygenation of alkanes, biomass delignification and lignin oxidation, among others. These successful case stories demonstrate the unexploited potential of oxidoreductases in medium and large-scale biotransformations. KW - Peroxygenase KW - Biotechnology Y1 - 2017 U6 - https://doi.org/10.1016/j.biotechadv.2017.06.003 SN - 1873-1899 SN - 0734-9750 VL - 35 IS - 6 SP - 815 EP - 831 ER - TY - GEN A1 - Wright Larsen, Axel A1 - Korsholm, Søren Bang A1 - Gonçalves, B. A1 - Gutierrez, H. E. A1 - Henriques, E. A1 - Infante, V. A1 - Jensen, T. A1 - Jessen, M. A1 - Klinkby, E. B. A1 - Nonbøl, E. A1 - Luis, R. A1 - Vale, A. A1 - Lopes, A. A1 - Naulin, V. A1 - Nielsen, S. K. A1 - Salewski, M. A1 - Rasmussen, J. A1 - Taormina, A. A1 - Møllsøe, C. A1 - Mussenbrock, Thomas A1 - Trieschmann, Jan T1 - Mitigation of EC breakdown in the gyrotron transmission line of the ITER Collective Thomson Scattering diagnostic via a Split Biased Waveguide T2 - Journal of Instrumentation Y1 - 2019 U6 - https://doi.org/10.1088/1748-0221/14/11/C11009 SN - 1748-0221 VL - 14 ER - TY - GEN A1 - Bissolli, Peter A1 - Demicran, Mesut A1 - Gutiérrez, J. M. A1 - Kendon, Mike A1 - Kennedy, John A1 - Lakatos, Monika A1 - McCarthy, Gerard A1 - Morice, Colin A1 - Pons, M. R. A1 - Rollenbeck, Rütger A1 - Sensoy, Serhat A1 - Trachte, Katja A1 - van der Schrier, Gerard T1 - Europe and the Middle East T2 - Bulletin of the American Meteorological Society / State of the Climate in 2016 N2 - In 2016, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide— continued to increase and reach new record highs. The 3.5 ± 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58- year measurement record. The annual global average carbon dioxide concentration at Earth’s surface surpassed 400 ppm (402.9 ± 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Niño events since at least 1950 dissipated in spring, and a weak La Niña evolved later in the year. Owing at least in part to the combination of El Niño conditions early in the year and a long-term upward trend, Earth’s surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth’s surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44°C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0°C above the 1981–2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8°C, representing a 3.5°C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981–2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981–2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute ~7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01°C. The global sea surface temperature trend for the 21st centuryto-date of +0.162°C decade−1 is much higher than the longer term 1950–2016 trend of +0.100°C decade−1. Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981–2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012–14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991–2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981–2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins—the North Atlantic, and eastern and western North Pacific—experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir–Simpson category 5 intensity level. The strong El Niño at the beginning of the year that transitioned to a weak La Niña contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia’s worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses. Y1 - 2017 U6 - https://doi.org/10.1175/2017BAMSStateoftheClimate.1 SN - 1520-0477 SN - 0003-0007 VL - 98 IS - 8 SP - 201 EP - 212 ER - TY - GEN A1 - Casanueva, Anna A1 - Keuler, Klaus A1 - Kotlarski, Sven A1 - Herrera, Sixto A1 - Fernández, Jésus A1 - Gutiérrez, J. M. A1 - Boberg, Fredrik A1 - Colette, Augustin A1 - Bøssing Christensen, Ole A1 - Goergen, Klaus A1 - Jacob, Daniela A1 - Nikulin, Grigory A1 - Teichmann, Claas A1 - Vautard, Robert T1 - Daily precipitation statistics in a EURO-CORDEX RCM ensemble: Added value of raw and bias-corrected high-resolution simulations T2 - Climate Dynamics N2 - Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days—90pWET, contribution of the very wet days to total precipitation—R95pTOT and number of consecutive dry days—CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since correcting some distributional features typically leads to an improvement of some aspects but to a deterioration of others. Regarding mean seasonal biases before the BC, we find only limited evidence for an added value of the higher resolution in the precipitation intensity and frequency or in the derived indicators. Thereby, evaluation results considerably depend on the RCM, season and indicator considered. High resolution simulations better reproduce the indicators’ spatial patterns, especially in terms of spatial correlation. However, this improvement is not statistically significant after applying specific BC methods. KW - dded value; Bias correction; EURO-CORDEX; Precipitation indices; Regional climate models Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2865-x SN - 1432-0894 VL - 47 IS - 3/4 SP - 719 EP - 737 ER -