TY - GEN A1 - De Mel, Ishanki A1 - Demis, Panagiotis A1 - Dorneanu, Bogdan A1 - Klymenko, Oleksiy A1 - Mechleri, Evgenia A1 - Arellano-Garcia, Harvey T1 - Global Sensitivity Analysis for Design and Operation of Distributed Energy Systems T2 - Computer Aided Chemical Engineering N2 - Distributed Energy Systems (DES) are set to play a vital role in achieving emission targets and meeting higher global energy demand by 2050. However, implementing these systems has been challenging, particularly due to uncertainties in local energy demand and renewable energy generation, which imply uncertain operational costs. In this work we are implementing a Mixed-Integer Linear Programming (MILP) model for the operation of a DES, and analysing impacts of uncertainties in electricity demand, heating demand and solar irradiance on the main model output, the total daily operational cost, using Global Sensitivity Analysis (GSA). Representative data from a case study involving nine residential areas at the University of Surrey are used to test the model for the winter season. Distribution models for uncertain variables, obtained through statistical analysis of raw data, are presented. Design results show reduced costs and emissions, whilst GSA results show that heating demand has the largest influence on the variance of total daily operational cost. Challenges and design limitations are also discussed. Overall, the methodology can be easily applied to improve DES design and operation. Y1 - 2020 UR - https://www.sciencedirect.com/science/article/abs/pii/B9780128233771502548?via%3Dihub U6 - https://doi.org/10.1016/B978-0-12-823377-1.50254-8 SN - 1570-7946 VL - 48 SP - 1519 EP - 1524 ER - TY - GEN A1 - De Mel, Ishanki A1 - Demis, Panagiotis A1 - Dorneanu, Bogdan A1 - Klymenko, Oleksiy A1 - Mechleri, Evgenia A1 - Arellano-Garcia, Harvey T1 - Global sensitivity analysis for design and operation of distributed energy systems: A two-stage approach T2 - Sustainable Energy Technologies and Assessments N2 - Distributed Energy Systems (DES) can play a vital role as the energy sector faces unprecedented changes to reduce carbon emissions by increasing renewable and low-carbon energy generation. However, current operational DES models do not adequately reflect the influence of uncertain inputs on operational outputs, resulting in poor planning and performance. This paper details a methodology to analyse the effects of uncertain model inputs on the primary output, the total daily cost, of an operational model of a DES. Global Sensitivity Analysis (GSA) is used to quantify these effects, both individually and through interactions, on the variability of the output. A Mixed-Integer Linear Programming model for the DES design is presented, followed by the operational model, which incorporates Rolling Horizon Model Predictive Control. A subset of model inputs, which include electricity and heating demand, and solar irradiance, is treated as uncertain using data from a case study. Results show reductions of minimum 25% in the total annualised cost compared to a traditional design that purchases electricity from the centralised grid and meets heating demand using boilers. In terms of carbon emissions, the savings are much smaller, although the dependency on the national grid is drastically reduced. Limitations and suggestions for improving the overall DES design and operation are also discussed in detail, highlighting the importance of incorporating GSA into the DES framework. Y1 - 2023 UR - https://www.sciencedirect.com/science/article/pii/S2213138823000565?dgcid=author U6 - https://doi.org/10.1016/j.seta.2023.103064 SN - 2213-1388 VL - 56 ER - TY - GEN A1 - De Mel, Ishanki A1 - Mechleri, Evgenia A1 - Demis, Panagiotis A1 - Dorneanu, Bogdan A1 - Klymenko, Oleksiy A1 - Arellano-Garcia, Harvey T1 - A Methodology for Global Sensitivity Analysis for the Operation of Distributed Energy Systems Using a Two-Stage Approach T2 - 2019 AIChE Annual Meeting N2 - Optimisation-based models are often employed for the design and operation of distributed energy systems (DES). A two-stage approach often involves the optimisation of the design of a distributed energy system for a specified location or scale, and the subsequent optimisation of the operational model based on the structure recommended by the design model. The structure includes what types of generation and storage technologies should be used in the operation, related capacities and sizes, and potential locations. Often, both design and operational models are deterministic in nature, as either past or fictitious data is fed into the models to minimise an objective function such as the total cost or environmental impact due to carbon emissions. Consequently, the operational models encounter challenges when real-time data is fed, as time-variant input variables such as electricity demand, heating demand and solar insolation can be deemed uncertain. These variables could have unexpected and significant impacts on the total costs involved with the operation of distributed energy systems, leading to sub-optimality or even infeasibilities. Identifying these input variables, quantifying their uncertainties (which are then described in the models), and evaluating the influence of these variables on the outputs can lead to the design of more robust models. Such models can then be used to design and operate optimal distributed energy systems. This paper presents a novel methodology for using global sensitivity analysis (GSA) on an operational optimisation-based model of a distributed energy system. The operational model also utilises Model Predictive Control (MPC) rolling horizon concepts (as done by [1]) to determine hourly total operational costs. The paper also addresses how some challenges and limitations encountered in the operational model can be attributed to the deterministic design model on which the structure of the operational model has been based. Furthermore, the research explores how the design can be improved to support more robust operation. Another novel aspect of this paper highlights the use of the optimisation tool GAMS alongside SobolGSA, a global sensitivity analysis software [2]. This software uses the variance-based Sobol method to generate N samples and perform global sensitivity analysis, allowing users to understand how variations in the inputs can influence the outputs, whilst accounting for the different combinations of the uncertain parameters without varying one uncertain parameter at a time. Y1 - 2019 UR - https://www.aiche.org/conferences/aiche-annual-meeting/2019/proceeding/paper/373ah-methodology-global-sensitivity-analysis-operation-distributed-energy-systems-using-two-stage SN - 978-0-8169-1112-7 ER -