TY - GEN A1 - Schwedt, Inge A1 - Schöne, Kerstin A1 - Eckert, Maike A1 - Pizzinato, Manon A1 - Winkler, Laura A1 - Knotkova, Barbora A1 - Richts, Björn A1 - Hau, Jann‐Louis A1 - Steuber, Julia A1 - Mireles, Raul A1 - Noda‐Garcia, Lianet A1 - Fritz, Günter A1 - Mittelstädt, Carolin A1 - Hertel, Robert A1 - Commichau, Fabian M. T1 - The low mutational flexibility of the EPSP synthase in Bacillus subtilis is due to a higher demand for shikimate pathway intermediates T2 - Environmental Microbiology N2 - Glyphosate (GS) inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that is required for aromatic amino acid, folate and quinone biosynthesis in Bacillus subtilis and Escherichia coli. The inhibition of the EPSP synthase by GS depletes the cell of these metabolites, resulting in cell death. Here, we show that like the laboratory B. subtilis strains also environmental and undomesticated isolates adapt to GS by reducing herbicide uptake. Although B. subtilis possesses a GS-insensitive EPSP synthase, the enzyme is strongly inhibited by GS in the native environment. Moreover, the B. subtilis EPSP synthase mutant was only viable in rich medium containing menaquinone, indicating that the bacteria require a catalytically efficient EPSP synthase under nutrient-poor conditions. The dependency of B. subtilis on the EPSP synthase probably limits its evolvability. In contrast, E. coli rapidly acquires GS resistance by target modification. However, the evolution of a GS-resistant EPSP synthase under non-selective growth conditions indicates that GS resistance causes fitness costs. Therefore, in both model organisms, the proper function of the EPSP synthase is critical for the cellular viability. This study also revealed that the uptake systems for folate precursors, phenylalanine and tyrosine need to be identified and characterized in B. subtilis. Y1 - 2023 U6 - https://doi.org/10.1111/1462-2920.16518 SN - 1462-2912 SN - 1462-2920 VL - 25 IS - 12 SP - 3604 EP - 3622 ER - TY - GEN A1 - Schwedt, Inge A1 - Collignon, Madeline A1 - Mittelstädt, Carolin A1 - Giudici, Florian A1 - Rapp, Johanna A1 - Meißner, Janek A1 - Link, Hannes A1 - Hertel, Robert A1 - Commichau, Fabian M. T1 - Genomic adaptation of Burkholderia anthina to glyphosate uncovers a novel herbicide resistance mechanism T2 - Environmental Microbiology Reports N2 - Glyphosate (GS) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase that converts phosphoenolpyruvate (PEP) and shikimate-3-phosphate to EPSP in the shikimate pathway of bacteria and other organisms. The inhibition of the EPSP synthase depletes the cell of the EPSP-derived aromatic amino acids as well as of folate and quinones. A variety of mechanisms (e.g., EPSP synthase modification) has been described that confer GS resistance to bacteria. Here, we show that the Burkholderia anthina strain DSM 16086 quickly evolves GS resistance by the acquisition of mutations in the ppsR gene. ppsR codes for the pyruvate/ortho-Pi dikinase PpsR that physically interacts and regulates the activity of the PEP synthetase PpsA. The mutational inactivation of ppsR causes an increase in the cellular PEP concentration, thereby abolishing the inhibition of the EPSP synthase by GS that competes with PEP for binding to the enzyme. Since the overexpression of the Escherichia coli ppsA gene in Bacillus subtilis and E. coli did not increase GS resistance in these organisms, the mutational inactivation of the ppsR gene resulting in PpsA overactivity is a GS resistance mechanism that is probably unique to B. anthina. Y1 - 2023 U6 - https://doi.org/10.1111/1758-2229.13184 SN - 1758-2229 VL - 15 IS - 6 SP - 727 EP - 739 ER - TY - GEN A1 - Friedrich, Ines A1 - Klassen, Anna A1 - Neubauer, Hannes A1 - Schneider, Dominik A1 - Hertel, Robert A1 - Daniel, Rolf T1 - Living in a Puddle of Mud: Isolation and Characterization of Two Novel Caulobacteraceae Strains Brevundimonas pondensis sp. nov. and Brevundimonas goettingensis sp. nov. T2 - Applied Microbiology N2 - Brevundimonas is a genus of freshwater bacteria belonging to the family Caulobacteraceae. The present study describes two novel species of the genus Brevundimonas (LVF1 T and LVF2 T ). Both were genomically, morphologically, and physiologically characterized. Average nucleotide identity analysis revealed both are unique among known Brevundimonas strains. In silico and additional ProphageSeq analyses resulted in two prophages in the LVF1 T genome and a remnant prophage in the LVF2 T genome. Bacterial LVF1 T cells form an elliptical morphotype, in average 1 µ m in length and 0.46 µ m in width, with a single flagellum. LVF2 T revealed motile cells approximately 1.6 µ m in length and 0.6 µ m in width with a single flagellum, and sessile cell types 1.3 µ m in length and 0.6 µ m in width. Both are Gram-negative, aerobic, have optimal growth at 30 ◦ C (up to 0.5 to 1% NaCl). Both are resistant towards erythromycin, meropenem, streptomycin, tetracycline and vancomycin. Anaerobic growth was observed after 14 days for LVF1 T only. For LVF1 T the name Brevundimonas pondensis sp. nov. and for LVF2 T the name Brevundimonas goettingensis sp. nov. are proposed. Type strains are LVF1 T (=DSM 112304 T = CCUG 74982 T = LMG 32096 T ) and LVF2 T (=DSM 112305 T = CCUG 74983 T = LMG 32097 T ). Y1 - 2021 UR - https://www.mdpi.com/2673-8007/1/1/5 U6 - https://doi.org/10.3390/applmicrobiol1010005 SN - 2673-8007 VL - 1 IS - 1 SP - 38 EP - 59 ER - TY - GEN A1 - Kohm, Katharina A1 - Hertel, Robert T1 - The life cycle of SPβ and related phages T2 - Archives of Virology N2 - Phages are viruses of bacteria and are the smallest and most common biological entities in the environment. They can reproduce immediately after infection or integrate as a prophage into their host genome. SPβ is a prophage of the Gram-positive model organism Bacillus subtilis 168, and it has been known for more than 50 years. It is sensitive to dsDNA damage and is induced through exposure to mitomycin C or UV radiation. When induced from the prophage, SPβ requires 90 min to produce and release about 30 virions. Genomes of sequenced related strains range between 128 and 140 kb, and particle-packed dsDNA exhibits terminal redundancy. Formed particles are of the Siphoviridae morphotype. Related isolates are known to infect other B. subtilis clade members. When infecting a new host, SPβ presumably follows a two-step strategy, adsorbing primarily to teichoic acid and secondarily to a yet unknown factor. Once in the host, SPβ-related phages pass through complex lysis-lysogeny decisions and either enter a lytic cycle or integrate as a dormant prophage. As prophages, SPβ-related phages integrate at the host chromosome's replication terminus, and frequently into the spsM or kamA gene. As a prophage, it imparts additional properties to its host via phage-encoded proteins. The most notable of these functional proteins is sublancin 168, which is used as a molecular weapon by the host and ensures prophage maintenance. In this review, we summarise the existing knowledge about the biology of the phage regarding its life cycle and discuss its potential as a research object. Y1 - 2021 UR - https://link.springer.com/article/10.1007%2Fs00705-021-05116-9 U6 - https://doi.org/10.1007%2Fs00705-021-05116-9 SN - 1432-8798 SN - 0304-8608 VL - 166 IS - 8 SP - 2119 EP - 2130 ER - TY - GEN A1 - Kohm, Katharina A1 - Floccari, Valentina A1 - Lutz, Veronika A1 - Nordmann, Birthe A1 - Mittelstädt, Carolin A1 - Poehlein, Anja A1 - Dragos, Anna A1 - Commichau, Fabian M. A1 - Hertel, Robert T1 - The Bacillus phage SPβ and its relatives: A temperate phage model system reveals new strains, species, prophage integration loci, conserved proteins and lysogeny management components T2 - bioRxiv beta N2 - The Bacillus phage SPβ has been known for about 50 years, but only a few strains are avalible. We isolated four new wild type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPβ-like phages. We could also reveal the SPβ-like phage genome replication strategy, the genome packaging mode, and the phage genome opening point. We extracted 55 SPβ-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resembled four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPβ-like prophages consists of 38 proteins. The integration cassette proved to be not conserved even though present in all strains. It consists of distinct integrases. Analysis of SPβ transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system. Y1 - 2021 UR - https://www.biorxiv.org/content/10.1101/2021.11.22.469490v1 U6 - https://doi.org/10.1101/2021.11.22.469490 ER - TY - GEN A1 - Hertel, Robert T1 - SPβ, ein Bacillus-Phage mit vielen Geheimnissen T2 - Biospektrum N2 - Phagen oder Bakteriophagen sind Viren von Bakterien. Sie übernehmen den Wirtsmetabolismus und nutzen diesen für die eigene Vermehrung. Die direkte Reproduktion wird als lytischer Zyklus bezeichnet und die Phagen als lytische Phagen. Temperente Phagen hingegen können ihr Erbgut in das bakterielle Genom integrieren, es inaktiv schalten und gemeinsam mit ihrem Wirt replizieren. Es entsteht ein Prophage und ein lysogenes Bakterium. Ein Prophage kann seinem Wirt durch das zusätzliche genetische Material neue Eigenschaften vermitteln und ihn in seltenen Fällen sogar zum Pathogen machen. Y1 - 2021 U6 - https://doi.org/10.1007/s12268-021-1666-5 SN - 1868-6249 SN - 0947-0867 VL - 27 IS - 7 SP - S. 781 ER -