TY - CHAP A1 - He, Qianwen A1 - Molkenthin, Frank A1 - Wendland, Frank A1 - Herrmann, Frank T1 - Evaluation of different interpolation schemes for precipitation and reference evapotranspiration and the impact on simulated large-scale water balance in Slovenia T2 - European Geosciences Union, General Assembly 2016, Vienna, Austria N2 - Precipitation and reference evapotranspiration (ET0) are two main climate input components for hydrological models, which are often recorded or calculated based on measuring stations. Interpolation schemes are implemented to regionalize data from measuring stations for distributed hydrological models. This study had been conducted for 5 months, with the aim of: (1) evaluating three interpolation schemes for precipitation and reference evapotranspiration (ET0); (2) assessing the impact of the interpolation schemes on actual evapotranspiration and total runoff simulated by a distributed large-scale water balance model - mGROWA. The study case was the Republic of Slovenia, including a high variability in topography and climatic conditions, with daily meteorological data measured in 20 stations for a period of 44 years. ET0 were computed by both FAO Penman-Monteith equation and Hargreaves equation. The former equation is recommended as the standard equation, while the ET0 calculated by the latter one for Slovenia had a certain deviation (+150 mm/a) from it. Ordinary Kriging, Regression Kriging and Linear Regression were selected to regionalize precipitation and ET0. Reliability of the three interpolation schemes had been assessed based on the residual obtained from cross-validation. Monthly regionalized precipitation and ET0 were subsequently used as climate input for mGROWA model simulation. Evaluation of the interpolation schemes showed that the application of Regression Kriging and Linear Regression led to an acceptable interpolation result for reference evapotranspiration, especially in case the FAO Penman-Monteith equation was used. On the other hand, Regression Kriging also provided a more convincing interpolated result for precipitation. Meanwhile, mGROWA simulation results were affected by climate input data sets generated by applying difference interpolation schemes. Therefore, it is essential to select an appropriate interpolation scheme, in order to generate a convincing climate input. Y1 - 2016 UR - http://meetingorganizer.copernicus.org/EGU2016/EGU2016-8570.pdf N1 - EGU2016-8570 PB - European Geophysical Society CY - Katlenburg-Lindau ER - TY - GEN A1 - Herrmann, Frank A1 - Jahnke, Christoph A1 - Jenn, Florian A1 - Kunkel, Ralf A1 - Voigt, Hans-Jürgen A1 - Voigt, Jens A1 - Wendland, Frank T1 - Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany N2 - Abstract: Groundwater recharge rates calculated with the GROWA model have been applied as the recharge boundary condition for the regional groundwater model Rurscholle. This model simulates groundwater dynamics in the Pleistocene aquifers of the Lower Rhine lignite mining area (Germany). GROWA uses an area-differentiated approach to calculate recharge rates depending on runoff-relevant site characteristics, which are represented by a set of baseflow indices. The regional accuracy of the coupled groundwater and GROWA models has been checked using groundwater hydrographs as validation criteria. The results suggest that the current (unadjusted) version of GROWA underestimates the regional groundwater recharge rate by 10-20 mm/yr. The comparative analysis identified areas where recharge calculations could be improved by adjusting the baseflow indices for areas where runoff is dominated by slope, low water-logging and a low degree of sealing. Using the adjusted set of baseflow indices, the mean groundwater recharge rate of the Rurscholle region was modelled as approx. 170 mm/yr. This study highlights the benefit of using a coupled approach and being able to independently calibrate and validate groundwater recharge boundary conditions in regional groundwater models. KW - GROWA KW - Groundwater recharge/water budget KW - Mining KW - Numerical modeling Y1 - 2009 ER - TY - GEN A1 - Wendland, Frank A1 - Berthold, Georg A1 - Fritsche, Johann-Gerhard A1 - Herrmann, Frank A1 - Kunkel, Ralf A1 - Voigt, Hans-Jürgen A1 - Vereecken, Harry T1 - A conceptual hydrogeological model for evaluating residence times in Hessen KW - Conceptual hydrogeological model KW - Residence times KW - EU-WFD KW - Large-scale model KW - Hessen Y1 - 2011 ER - TY - GEN A1 - Herrmann, Frank A1 - Keuler, Klaus A1 - Wolters, Tim A1 - Bergmann, Sabine A1 - Eisele, Michael A1 - Wendland, Frank T1 - Mit der Modellkette RCP-GCM-RCM-mGROWA projizierte Grundwasserneubildung als Datenbasis für zukünftiges Grundwassermanagement in Nordrhein-Westfalen T2 - Grundwasser N2 - Mit einem Multi-Modell-Ensemble wurde analysiert, wie sich der Klimawandel auf den Grundwasserhaushalt in Nordrhein-Westfalen (NRW) auswirkt. Hierzu wurden Projektionen der zukünftigen Grundwasserneubildung für insgesamt 36 Mitglieder der Modellkette RCP-GCM-RCM-mGROWA, bestehend aus 3 RCP-Szenarien zukünftiger globaler Erwärmung, 6 globalen und 5 dynamischen regionalen Klimamodellen sowie dem Wasserhaushaltsmodell mGROWA, vorgenommen. Mit dem Ensemble wurden für die hydrogeologischen Großräume NRWs nur teilweise signifikante Änderungen der jährlichen Grundwasserneubildung in den Perioden 2011–2040, 2041–2070 und 2071–2100 projiziert. Ein Robustheitstest mit zwei Kriterien (Übereinstimmung und Signifikanz der Änderungssignale) liefert keine belastbare Begründung dafür, dass sich die Grundwasserneubildung bis 2100 systematisch und signifikant ändern wird. Aus statistischer Perspektive wird deshalb die Schlussfolgerung gezogen, dass in NRW langfristig eine Grundwasserneubildung erwartet werden kann, die sich nicht grundlegend vom Niveau der Periode 1971–2000 unterscheidet. Hydro-meteorologisch befindet sich NRW in einer Übergangszone, in der eine Zunahme der Winterniederschläge die Wirkung der Erwärmung auf die Grundwasserneubildung wahrscheinlich kompensiert. KW - Grundwasserneubildung KW - Nordrhein-Westfalen KW - mGROWA KW - Klimawandel KW - Multi-Modell-Ensemble KW - Robustheit KW - Groundwater recharge KW - North Rhine-Westphalia KW - Climate change impact KW - Multi-model ensemble KW - Robustness Y1 - 2021 U6 - https://doi.org/10.1007/s00767-020-00471-x SN - 1430-483X SN - 1432-1165 VL - 26 IS - 1 SP - 17 EP - 31 ER - TY - THES A1 - Herrmann, Frank T1 - Entwicklung einer Methodik zur großräumigen Modellierung von Grundwasserdruckflächen am Beispiel der Grundwasserleiter des Bundeslandes Hessen KW - Grundwasserdruckfläche KW - Hessen Y1 - 2010 ER -