TY - GEN A1 - Hüttner, Sören A1 - Henze, Henriette A1 - Elster, Dana A1 - Koch, Philipp A1 - Anderer, Ursula A1 - Eyss, Björn von A1 - Maltzahn, Julia von T1 - A dysfunctional miR-1-TRPS1-MYOG axis drives ERMS by suppressing terminal myogenic differentiation T2 - Molecular Therapy N2 - Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes. Y1 - 2023 U6 - https://doi.org/10.1016/j.ymthe.2023.07.003 SN - 1525-0024 SN - 1525-0016 VL - 31 IS - 9 SP - 2612 EP - 2632 ER - TY - GEN A1 - Schurig, Mona A1 - Umeh, Obinna A1 - Henze, Henriette A1 - Jung, Marie Juliane A1 - Gresing, Lennart A1 - Blanchard, Veronique A1 - Maltzahn, Julia von A1 - Hübner, Christian A1 - Franzka, Patricia T1 - Consequences of GMPPB deficiency for neuromuscular development and maintenance T2 - Frontiers in Molecular Neuroscience N2 - Guanosine diphosphate-mannose pyrophosphorylase B (GMPPB) catalyzes the conversion of mannose-1-phosphate and GTP to GDP-mannose, which is required as a mannose donor for the biosynthesis of glycan structures necessary for proper cellular functions. Mutations in GMPPB have been associated with variable neuromuscular disorders such as muscular dystrophy and myasthenic syndromes. Here, we report that GMPPB protein abundance increases during brain and skeletal muscle development, which is accompanied by an increase in overall protein mannosylation. To model the human disorder in mice, we generated heterozygous GMPPB KO mice using CRISPR/Cas9. While we were able to obtain homozygous KO mice from heterozygous matings at the blastocyst stage, homozygous KO embryos were absent beyond embryonic day E8.5, suggesting that the homozygous loss of GMPPB results in early embryonic lethality. Since patients with GMPPB loss-of-function manifest with neuromuscular disorders, we investigated the role of GMPPB in vitro. Thereby, we found that the siRNA-mediated knockdown of Gmppb in either primary myoblasts or the myoblast cell line C2C12 impaired myoblast differentiation and resulted in myotube degeneration. siRNA-mediated knockdown of Gmppb also impaired the neuron-like differentiation of N2A cells. Taken together, our data highlight the essential role of GMPPB during development and differentiation, especially in myogenic and neuronal cell types. Y1 - 2024 U6 - https://doi.org/10.3389/fnmol.2024.1356326 SN - 1662-5099 VL - 17 ER -