TY - GEN A1 - Morales, Carlos A1 - Kosto, Yuliia A1 - Tschammer, Rudi A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Unraveling the effects of substrate interaction on the chemical properties of atomic layer deposited ultra-thin ceria layers T2 - Verhandlungen der DPG N2 - Atomic layer deposition (ALD) is well known to lead to amorphous and defective, non-stoichiometric films, potentially resulting in modified material properties that can also be affected by film/substrate interaction in the case of ultra-thin growths. For example, the formation, diffusion, and recovery of oxygen vacancies can be favored in disordered, reducible metal oxides compared to more ordered deposits, whereas interdiffusion processes can critically affect the film/substrate interface region. These effects have extensively been studied for thin thermal-ALD ceria films (below 15 nm) by combining in-situ and ex-situ characterization techniques in our lab and at synchrotron radiation facilities. While using alumina or silica substrates modifies the initial growth rate, Ce3+/Ce4+ ratio, and ceria morphology, the formation of different species at the interface affects its reactivity. Interestingly, the experiments have shown high reducibility of ALD-ceria ultrathin films on silica for very low hydrogen concentrations, even at room temperature, whereas for alumina substrates the formation of aluminates at the interface prevents further oxidation. Moreover, the comparison with more ordered films indicates a key role of the defective structure of ALD films in Ce3+/Ce4+ conversion. KW - Atomic layer deposition (ALD) KW - ceria KW - interface reaction KW - morphology KW - reducibility KW - hydrogen detection Y1 - 2024 UR - https://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/o/session/49/contribution/8 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Tschammer, Rudi A1 - Kosto, Yuliia A1 - Morales, Carlos A1 - Schmickler, Marcel A1 - Henkel, Karsten A1 - Devi, Anjana A1 - Flege, Jan Ingo T1 - Atomic layer deposition of cerium oxide monitored by operando ellipsometry and in-situ X-ray photoelectron spectroscopy T2 - Verhandlungen der DPG N2 - Atomic layer deposition (ALD) has been used extensively to grow homogeneous films with excellent coverage and atomic-scale thickness control for a variety of applications. However, remaining challenges include the investigation of novel precursor-oxidant combinations for low-temperature deposition as well as unraveling the complex interplay between substrate and coating for ultrathin films. In this work, we present a detailed investigation of ultrathin cerium oxide films grown using the novel Ce(dpdmg)3 precursor with H2O and O2. Following a surface science-based approach, we have combined operando spectroscopic ellipsometry and in-situ X-ray photoelectron spectroscopy to allow rapid process optimization and determination of the complex relation between oxide stoichiometry, film thickness and ALD growth parameters, revealing a distinct dependence of inital Ce3+ content on the film thickness and choice of oxidant. This offers the possibility of adjusting the oxide properties to application requirements e.g. in gas sensing by choosing a suitable precursor-oxidant combination. KW - Atomic layer deposition (ALD) KW - ceria KW - low-temperature deposition KW - operando spectroscopic ellipsometry KW - in-situ X-ray photoelectron spectroscopy KW - film thickness KW - oxidant choice KW - cerium oxidation state Y1 - 2024 UR - https://www.dpg-verhandlungen.de/year/2024/conference/berlin/part/o/session/49/contribution/4 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Mahmoodinezhad, Ali A1 - Morales, Carlos A1 - Naumann, Franziska A1 - Plate, Paul A1 - Meyer, Robert A1 - Janowitz, Christoph A1 - Henkel, Karsten A1 - Kot, Małgorzata A1 - Zöllner, Marvin Hartwig A1 - Wenger, Christian A1 - Flege, Jan Ingo T1 - Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma T2 - Journal of Vacuum Science and Technology A N2 - Indium oxide (InxOy) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium and oxygen plasma in a low-temperature range of 80–200 °C. The optical properties, chemical composition, crystallographic structure, and electrical characteristics of these layers were investigated by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), as well as current-voltage and capacitance-voltage measurements. The SE results yielded a nearly constant growth rate of 0.56 Å per cycle and a thickness inhomogeneity of ≤1.2% across 4-in. substrates in the temperature range of 100–150 °C. The refractive index (at 632.8 nm) was found to be 2.07 for the films deposited at 150 °C. The PEALD-InxOy layers exhibit a direct (3.3 ± 0.2 eV) and an indirect (2.8 ± 0.1 eV) bandgap with an uptrend for both with increasing substrate temperature. Based on XPS characterization, all InxOy samples are free of carbon impurities and show a temperature-dependent off-stoichiometry indicating oxygen vacancies. XRD diffraction patterns demonstrate an onset of crystallization at 150 °C. Consistent with the optical, XPS, and XRD data, the films deposited at ≥150 °C possess higher electrical conductivity. Our findings prove that a low-temperature PEALD process of InxOy is feasible and promising for a high-quality thin-film deposition without chemical impurities on thermally fragile substrates. KW - Indium oxide KW - Plasma-enhanced atomic layer deposition KW - X-ray photoelectron spectroscopy KW - Ellipsometry KW - X-ray diffraction KW - Electrical properties Y1 - 2021 U6 - https://doi.org/10.1116/6.0001375 SN - 0734-2101 SN - 1520-8559 VL - 39 IS - 6 ER - TY - GEN A1 - Janowitz, Christoph A1 - Mahmoodinezhad, Ali A1 - Kot, Małgorzata A1 - Morales, Carlos A1 - Naumann, Franziska A1 - Plate, Paul A1 - Zöllner, Marvin Hartwig A1 - Bärwolf, Florian A1 - Stolarek, David A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Toward controlling the Al2O3/ZnO interface properties by in situ ALD preparation T2 - Dalton Transactions N2 - An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters. KW - ALD heterojunction KW - band alignement KW - ZnO KW - Al2O3 KW - interface properties Y1 - 2022 U6 - https://doi.org/10.1039/D1DT04008A SN - 1477-9234 SN - 1477-9226 VL - 51 SP - 9291 EP - 9301 ER -