TY - GEN A1 - Morales, Carlos A1 - Plate, Paul A1 - Marth, Ludwig A1 - Naumann, Franziska A1 - Kot, Małgorzata A1 - Janowitz, Christoph A1 - Kus, Peter A1 - Zöllner, Marvin Hartwig A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Bottom-up design of a supercycle recipe for atomic layer deposition of tunable Indium Gallium Zinc Oxide thin films T2 - ACS Applied Electronic Materials N2 - We present a successful bottom-up approach to design a generic plasma-enhanced atomic layer deposition (PEALD) supercycle recipe to grow high-quality indium gallium zinc oxide (IGZO) thin films with tunable composition at a relatively low temperature of 150 °C. In situ real-time ellipsometric characterization in combination with ex situ complementary techniques has been used to optimize the deposition process and quality of the films by identifying and solving growth challenges such as degree of oxidation, nucleation delays, or elemental composition. The developed supercycle approach enables facile control of the target composition by adapting the subcycle ratios within the supercycle process. Compared to other low-temperature deposition techniques resulting in amorphous films, our PEALD–IGZO process at 150 °C results in nearly amorphous, nanocrystalline films. The preparation of IGZO films at low temperature by a supercycle PEALD approach allows controlling the thickness, composition, and electrical properties while preventing thermally induced segregation. KW - IGZO KW - PEALD KW - supercycle KW - XPS depth profiling KW - current density Y1 - 2024 U6 - https://doi.org/10.1021/acsaelm.4c00730 SN - 2637-6113 VL - 6 IS - 8 SP - 5694 EP - 5704 PB - American Chemical Society (ACS) ER - TY - GEN A1 - Kosto, Yuliia A1 - Morales, Carlos A1 - Devi, Anjana A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Activity of cerium oxide thin films prepared by atomic layer deposition using custom and commercial precursors T2 - Verhandlungen der DPG N2 - Atomic layer deposition (ALD) allows preparation of conformal coatings with possibility to control their thickness at the submonolayer level, making it a good tool for depositing active layers on 3D structures. Our group is working on cerium oxide-based materials for hydrogen detection, which is difficult at ambient conditions due to the low sensitivity and long response time of the sensors. The cerium oxide layers prepared by ALD contain a lot of defects and provide an opportunity to overcome these complications. Thickness and morphology of the oxide films play an important role in defining the Ce3+/Ce4+ ratio, as well as the interface with the used substrate. Here, we compare cerium oxide thin films deposited by ALD techniques on SiO2 and Al2O3 substrates. The results reveal that the interface to the substrate can considerably influence the reactivity of the cerium oxide toward hydrogen and oxygen. Preparation of the oxides using two different precursors (commercial Ce(thd)4 and custom Ce(dpdmg)3) has been demonstrated to affect the redox properties of the films, their reactivity, and the reversibility. KW - Atomic layer deposition KW - Cerium oxide KW - hydrogen detection Y1 - 2023 UR - https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/o/session/42/contribution/4 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Kot, Małgorzata A1 - Kedia, Mayank A1 - Plate, Paul A1 - Marth, Ludwig A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Application of plasma enhanced atomic layer deposition process of alumina on perovskite film boosts efficiency of solar cells T2 - Verhandlungen der DPG N2 - It is assumed that plasma-enhanced atomic layer deposition (PEALD) cannot be used to prepare thin films on sensitive organic-inorganic perovskites because the plasma destroys the perovskite film and thus deteriorates its photophysical properties. Here, we prove that using an appropriate geometry of the ALD system (SENTECH SI PEALD system) and suitable process parameters it is possible to coat perovskites with alumina by PEALD. Spectromicroscopy followed by electrical characterisation reveal that as long as the PEALD process is not optimized (too long plasma pulses) one gets degradation of the perovskite as well as dissociation of the created iodine pentoxide (during PEALD) under light that causes a valence band maximum (VBM) shift to the Fermi level and thus significantly decreases the solar cell efficiency. However, once the PEALD process parameters are optimized, no VBM shift is observed. Moreover, the solar cell efficiency depends inversely on process temperature and layer thickness. KW - Plamsa-enhanced atomic layer deposition KW - Perovskite solar cells KW - Valence band maximum Y1 - 2023 UR - https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/hl/session/4/contribution/2 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Mahmoodinezhad, Ali A1 - Morales, Carlos A1 - Kot, Małgorzata A1 - Naumann, Franziska A1 - Plate, Paul A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - A super-cycle approach to atomic layer deposition of indium-gallium-zinc oxide at low temperature T2 - Verhandlungen der DPG N2 - The continuing development of multifunctional devices needs novel multicomponent oxide layers, demanding a high control of both composition and thickness during their preparation. To this end, single metal oxides exhibiting high structural quality and conformity have successfully been grown by atomic layer deposition (ALD). However, the deposition of more complex compounds with specific optical and electrical properties is still challenging. In this work, we follow a bottom-up approach to design an ALD super-cycle to grow mixed indium-gallium-zinc oxide (IGZO) films with a controllable composition. For the formation of the individual indium, gallium, and zinc oxides, we found the use of plasma-enhanced ALD (PEALD) at 150 °C to be favorable when using the organometallic precursors trimethylindium, trimethylgallium, and diethylzinc together with oxygen plasma. The PEALD approach of IGZO films can particularly overcome a nucleation delay within the ZnO sub-cycle known from thermal ALD, achieving a higher growth per cycle and improving the quality and composition homogeneity of the films as shown by in-situ spectroscopic ellipsometry and ex-situ X-ray photoelectron spectroscopy. KW - Indium gallium zinc oxide KW - Transparent conducting oxide KW - Plasma-enhanced atomic layer deposition KW - X-ray photoelectron spectroscopy KW - spectroscopic ellipsometry KW - nucleation delay Y1 - 2023 UR - https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/o/session/40/contribution/3 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Morales, Carlos A1 - Kosto, Yuliia A1 - Tschammer, Rudi A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Reduction by H2 exposure at room temperature of ceria ultrathin films grown by atomic layer deposition T2 - Verhandlungen der DPG N2 - Atomic layer deposition (ALD) exhibits a high potential for integration as a scalable process in microelectronics, allowing well-controlled layer-by-layer deposition and conformal growth on 3D structures. Yet, the ALD technique is also well known to lead to amorphous and defective, non-stoichiometric films, potentially resulting in modified materials properties that, in the case of ultra-thin deposits, can also be affected by film/substrate interaction. Interestingly, initial in situ X-ray photoemission spectroscopy (XPS) measurements of ceria ALD-deposits on Al2O3/Si, sapphire, and SiO2 substrates confirm a Ce3+/Ce4+ mixture dependent on the substrate interaction, deposit thickness, and morphology. Using near-ambient pressure XPS, we have significantly reduced ultrathin (< 10 nm) ceria films grown by ALD by exposing them to different O2/H2 partial pressures at moderate temperatures (< 525K). Notably, the total amount of reduction to Ce3+ is found to depend on the deposit thickness and initial ceria/substrate interaction. Furthermore, the intrinsic defects related to the ALD method seem to play a critical role in the reversible reduction at room temperature. KW - Cerium oxide KW - atomic layer deposition KW - near-ambient pressure X-ray photoemission spectroscopy (NAPXPS) KW - hydrogen detection Y1 - 2023 UR - https://www.dpg-verhandlungen.de/year/2023/conference/skm/part/o/session/92/contribution/6 SN - 0420-0195 PB - Deutsche Physikalische Gesellschaft CY - Bad Honnef ER - TY - GEN A1 - Schmeißer, Dieter A1 - Müller, Klaus A1 - Henkel, Karsten T1 - Photosensitive and Rectifying Properties of Ga2O3 Described by Polaronic Screened Electrons and Internal Potentials T2 - Journal of Physical Chemistry C N2 - The photosensitive and rectifying properties of Ga2O3 are described by (n-type) intrinsic (π-) electrons. These polaronic screened multiatomic carriers populate the intrinsic defect states within the ionic gap; their spectroscopic evidence is based on resonant photoemission spectroscopy data that also provide the ionicity factor of Ga2O3 and the size of the ionic gap. The π-electron density depends on the internal potential and its photo- and field-induced dipole contributions, and it describes the observed combined ohmic-exponential carrier densities and current–voltage dependences. The π-electron dynamics is caused by pairing and dissociation dipoles in the bulk of Ga2O3. The material properties of the electrode contribute via external chemical potentials and define the criteria for ohmic and rectifying contacts. This quantitative and predictive concept not only convinces by perfect agreement with published experimental data but also points toward the achievable performance limits of UV absorbers and rectifying devices. KW - Resonant photoelectron spectroscopy KW - quantitative π-electron densities KW - multi-atomic quasi-particles KW - photosensitivity and rectifier devices Y1 - 2023 U6 - https://doi.org/10.1021/acs.jpcc.3c05785 SN - 1932-7447 SN - 1932-7455 VL - 127 IS - 47 SP - 23077 EP - 23089 ER - TY - GEN A1 - Morales, Carlos A1 - Mahmoodinezhad, Ali A1 - Tschammer, Rudi A1 - Kosto, Yuliia A1 - Alvarado Chavarin, Carlos A1 - Schubert, Markus Andreas A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Combination of Multiple Operando and In-Situ Characterization Techniques in a Single Cluster System for Atomic Layer Deposition: Unraveling the Early Stages of Growth of Ultrathin Al2O3 Films on Metallic Ti Substrates T2 - Inorganics N2 - This work presents a new ultra-high vacuum cluster tool to perform systematic studies of the early growth stages of atomic layer deposited (ALD) ultrathin films following a surface science approach. By combining operando (spectroscopic ellipsometry and quadrupole mass spectrometry) and in situ (X-ray photoelectron spectroscopy) characterization techniques, the cluster allows us to follow the evolution of substrate, film, and reaction intermediates as a function of the total number of ALD cycles, as well as perform a constant diagnosis and evaluation of the ALD process, detecting possible malfunctions that could affect the growth, reproducibility, and conclusions derived from data analysis. The homemade ALD reactor allows the use of multiple precursors and oxidants and its operation under pump and flow-type modes. To illustrate our experimental approach, we revisit the well-known thermal ALD growth of Al2O3 using trimethylaluminum and water. We deeply discuss the role of the metallic Ti thin film substrate at room temperature and 200 °C, highlighting the differences between the heterodeposition (<10 cycles) and the homodeposition (>10 cycles) growth regimes at both conditions. This surface science approach will benefit our understanding of the ALD process, paving the way toward more efficient and controllable manufacturing processes. KW - Atomic layer deposition (ALD) KW - in-situ KW - operando KW - X-ray photoelectron spectroscopy KW - ellipsometry KW - quadrupol mass spectrometry (QMS) Y1 - 2023 U6 - https://doi.org/10.3390/inorganics11120477 SN - 2304-6740 VL - 11 IS - 12 ER - TY - GEN A1 - Kot, Małgorzata A1 - Gawlińska‐Nęcek, Katarzyna A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Prospects of improving efficiency and stability of hybrid perovskite solar cells by alumina ultrathin films T2 - Small N2 - Over the last few years, the influence of low temperature (≤80 °C) and, in particular, of room temperature, atomic layer deposited alumina (ALD‐Al2O3) on the properties of the underlying hybrid perovskites of different compositions and on the efficiency and stability of the corresponding perovskite solar cells (PSCs) is extensively investigated. The main conclusion is that most probably thanks to the presence of intrinsic defect states in the ALD‐Al2O3 and in the perovskite layers, charge transfer and neutralization are possible and the entire lifetime of the PSCs is thus improved. Moreover, the migration of mobile ions between the layers is blocked by the ALD‐Al2O3 layer and thus the occurrence of hysteresis in the current density–voltage characteristics of the PSCs is suppressed. Considering the uniform and nondestructive surface coverage, low thermal budget, small amount of material required, and short duration of the established ALD‐Al2O3 deposition on top of hybrid perovskites, this additional, but fully solar cell technology‐compatible, process step is most likely the most effective, cheapest, and fastest way to improve the efficiency and long‐term stability of PSCs and thus increase their marketability. KW - Perovskite solar cells (PSC) KW - Atomic layer deposition (ALD) KW - Photoelecton spectroscopy (PES) KW - Aluminum oxide Y1 - 2025 U6 - https://doi.org/10.1002/smll.202408435 SN - 1613-6810 VL - 21 IS - 12 PB - Wiley ER - TY - GEN A1 - Kot, Małgorzata A1 - Gawlińska‐Nęcek, Katarzyna A1 - Pożarowska, Emilia A1 - Henkel, Karsten A1 - Schmeißer, Dieter T1 - Photosensitivity and carrier densities of perovskite solar absorbers T2 - Advanced science N2 - Dark and light current–voltage characteristics of perovskite solar absorbers are analyzed in terms of their carrier densities. The analysis reveals p‐type large polarons as a dominant carrier type in the investigated perovskite solar cells. The mechanism causing photosensitivity is attributed to the dissociation (and pairing) of bipolarons to large polarons (and vice versa) that are controlled by the internal potential Γ. As an example, the polaron concept is tested for a formamidinium lead triiodide perovskite solar cell. The individual steps of the data analysis are demonstrated and determine the ionicity factor of this perovskite film, quantify the density of the large polarons, and predict the gain and loss of photo‐induced carriers. It is deduced that a reversible light‐on/off operation can only occur when the bias voltage never exceeds a critical value of the internal potential. The results gained in this study suggest that the novel analysis can be successively applied on different hybrid perovskite materials, too. KW - Bipolarons KW - Ionicity factor KW - Large polarons KW - Perovskite solar cells Y1 - 2025 UR - https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412711 U6 - https://doi.org/10.1002/advs.202412711 SN - 2198-3844 VL - 12 IS - 16 SP - 1 EP - 8 PB - Wiley CY - Hobken, New Jersey ER - TY - GEN A1 - Morales, Carlos A1 - Gertig, Max A1 - Kot, Małgorzata A1 - Alvarado, Carlos A1 - Schubert, Markus Andreas A1 - Zoellner, Marvin Hartwig A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - In situ X‐ray photoelectron spectroscopy study of atomic layer deposited cerium oxide on SiO₂ : substrate influence on the reaction mechanism during the early stages of growth T2 - Advanced materials interfaces N2 - Thermal atomic layer deposition (ALD) of cerium oxide using commercial Ce(thd)4 precursor and O3 on SiO2 substrates is studied employing in‐situ X‐ray photoelectron spectroscopy (XPS). The system presents a complex growth behavior determined by the change in the reaction mechanism when the precursor interacts with the substrate or the cerium oxide surface. During the first growth stage, non‐ALD side reactions promoted by the substrate affect the growth per cycle, the amount of carbon residue on the surface, and the oxidation degree of cerium oxide. On the contrary, the second growth stage is characterized by a constant growth per cycle in good agreement with the literature, low carbon residues, and almost fully oxidized cerium oxide films. This distinction between two growth regimes is not unique to the CeOx/SiO2 system but can be generalized to other metal oxide substrates. Furthermore, the film growth deviates from the ideal layer‐by‐layer mode, forming micrometric inhomogeneous and defective flakes that eventually coalesce for deposit thicknesses above 10 nm. The ALD‐cerium oxide films present less order and a higher density of defects than films grown by physical vapor deposition techniques, likely affecting their reactivity in oxidizing and reducing conditions. KW - Atomic Layer Deposition (ALD) KW - Cerium oxide KW - In-situ X-ray Photoelectron spectroscopy (in-situ XPS) KW - Growth model KW - Substrate influence Y1 - 2025 U6 - https://doi.org/10.1002/admi.202400537 SN - 2196-7350 VL - 12 IS - 5 SP - 1 EP - 13 PB - Wiley CY - Weinheim ER -