TY - GEN A1 - Mauß, Fabian A1 - Nakov, Galin A1 - Wenzel, Paul A1 - Steiner, Rüdiger A1 - Krüger, Christian A1 - Zhang, Yongzeh A1 - Rawat, Rajesh A1 - Borg, Andreas A1 - Perlman, Cathleen A1 - Fröjd, Karin A1 - Lehtiniemi, Harry T1 - Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach T2 - SAE International Journal of Engines Y1 - 2010 SN - 1946-3936 VL - 2 IS - 2 SP - 89 EP - 104 ER - TY - CHAP A1 - Mauß, Fabian A1 - Lehtiniemi, Harry A1 - Zhang, Y. A1 - Rawat, Rajesh T1 - "Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models" Y1 - 2008 ER - TY - CHAP A1 - Mauß, Fabian A1 - Ebenezer, N. A1 - Lehtiniemi, Harry T1 - Adaptive Polynomial Tabulation (APT): A computationally economical strategy for the HCCI engine simulation of complex fuel Y1 - 2010 ER - TY - CHAP A1 - Lehtiniemi, Harry A1 - Mauß, Fabian A1 - Balthasar, M. A1 - Magnusson, I. T1 - Diesel Spray Ignition using a Progress Variable Approach T2 - Book of abstracts, Fifth Symposium Towards Clean Diesel Engines, 2 - 3 June 2005, Lund, Sweden Y1 - 2005 PB - Univ., Lund Institute of Technology CY - Lund ER - TY - CHAP A1 - Gogan, Adina A1 - Lehtiniemi, Harry A1 - Mauß, Fabian A1 - Sunden, Bengt T1 - Stochastic Reactor Model for Auto-Ignition Calculation in Spark Ignition Engines T2 - Proceedings of the European Combustion Meeting, Louvain-la-Neuve, Belgium, April 3 - 6, 2005 Y1 - 2005 N1 - CD-ROM CY - Louvain-la-Neuve ER - TY - CHAP A1 - Lehtiniemi, Harry A1 - Borg, Andreas A1 - Mauß, Fabian ED - Leipertz, Alfred T1 - Konditionierte Momenten-Schließung mit einem Fortschritts-Variablen-Ansatz T2 - Motorische Verbrennung, aktuelle Probleme und moderne Lösungsansätze XI. Tagung im Haus der Technik e.V., Ludwigsburg, 14./15. März 2013 Y1 - 2013 SN - 978-3-931901-87-5 SP - 347 EP - 358 PB - ESYTEC Energie- u. Systemtechnik CY - Erlangen ER - TY - CHAP A1 - Lehtiniemi, Harry A1 - Borg, Andreas A1 - Mauß, Fabian T1 - Conditional Moment Closure with a Progress Variable Approach T2 - Engine processes Y1 - 2013 SN - 978-3-8169-3222-2 SP - 100 EP - 111 PB - Expert Verlag CY - Renningen ER - TY - CHAP A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Lehtiniemi, Harry A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Impact of gasoline surrogates with different fuel sensitivity (RON-MON) on knock prediction T2 - Proceedings of the 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) ECCM 6 and 7th European Conference on Computational Fluid Dynamics ECFD 7, Glasgow, Scotland, UK June 11 – 15, 2018 KW - Impact of gasoline surrogates Y1 - 2018 UR - http://www.eccm-ecfd2018.org/frontal/docs/Ebook-Glasgow-2018-ECCM-VI-ECFD-VII.pdf SP - 906 EP - 917 ER - TY - CHAP A1 - Franken, Tim A1 - Netzer, Corinna A1 - Pasternak, Michal A1 - Mauß, Fabian A1 - Seidel, Lars A1 - Matrisciano, Andrea A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Kulzer, André Casal T1 - Assessment of Water Injection in a SI Engine using a Fast Running Detailed Chemistry Based Combustion Model T2 - Symposium of Combustion Control 2018, Aachen KW - Assessment of Water Injection Y1 - 2018 UR - https://www.researchgate.net/publication/326059620 UR - http://logesoft.com/loge-16/wp-content/uploads/2018/07/2018-06-19-SCC_-1.pdf CY - Aachen ER - TY - CHAP A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Lehtiniemi, Harry A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Impact of Formulation of Fuel Surrogates on Engine Knock Prediction T2 - International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress, April 9th , 2018, Detroit, USA KW - Impact of Formulation of Fuel Surrogates Y1 - 2018 UR - http://www.erc.wisc.edu/imem/2018/Paper%234-Netzer%20et%20al.pdf ER - TY - GEN A1 - Franken, Tim A1 - Duggan, Alexander A1 - Tao, Feng A1 - Matrisciano, Andrea A1 - Lehtiniemi, Harry A1 - Borg, Anders A1 - Mauß, Fabian T1 - Multi-Objective Optimization of Fuel Consumption and NOx Emissions of a heavy-duty Diesel engine using a Stochastic Reactor Model T2 - SAE technical paper N2 - Highly fuel-efficient Diesel engines, combined with effective exhaust aftertreatment systems, enable an economic and low-emission operation of heavy-duty vehicles. The challenge of its development arises from the present engine complexity, which is expected to increase even more in the future. The approved method of test bench measurements is stretched to its limits, because of the high demand for large parameter variations. The introduction of a physics-based quasi-dimensional stochastic reactor model combined with tabulated chemistry enables the simulation-supported development of these Diesel engines. The stochastic reactor model mimics mixture and temperature inhomogeneities induced by turbulence, direct injection and heat transfer. Thus, it is possible to improve the prediction of NOx emissions compared to common mean-value models. To reduce the number of designs to be evaluated during … KW - Highly fuel-efficient Diesel engines Y1 - 2019 SN - 0096-5170 SN - 0148-7191 IS - 2019-01-1173 ER - TY - GEN A1 - Franken, Tim A1 - Netzer, Corinna A1 - Mauß, Fabian A1 - Pasternak, Michal A1 - Seidel, Lars A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Matrisciano, Andrea A1 - Kulzer, André Casal T1 - Multi-objective optimization of water injection in spark-ignition engines using the stochastic reactor model with tabulated chemistry T2 - International Journal of Engine Research N2 - Water injection is investigated for turbocharged spark-ignition engines to reduce knock probability and enable higher engine efficiency. The novel approach of this work is the development of a simulation-based optimization process combining the advantages of detailed chemistry, the stochastic reactor model and genetic optimization to assess water injection. The fast running quasi-dimensional stochastic reactor model with tabulated chemistry accounts for water effects on laminar flame speed and combustion chemistry. The stochastic reactor model is coupled with the Non-dominated Sorting Genetic Algorithm to find an optimum set of operating conditions for high engine efficiency. Subsequently, the feasibility of the simulation-based optimization process is tested for a three-dimensional computational fluid dynamic numerical test case. The newly proposed optimization method predicts a trade-off between fuel efficiency and low knock probability, which highlights the present target conflict for spark-ignition engine development. Overall, the optimization shows that water injection is beneficial to decrease fuel consumption and knock probability at the same time. The application of the fast running quasi-dimensional stochastic reactor model allows to run large optimization problems with low computational costs. The incorporation with the Non-dominated Sorting Genetic Algorithm shows a well performing multi-objective optimization and an optimized set of engine operating parameters with water injection and high compression ratio is found. KW - Water Injection KW - Genetic Optimization KW - Spark Ignition Engine KW - Stochastic Reactor Model KW - Detailed Chemistry Y1 - 2019 UR - https://journals.sagepub.com/doi/full/10.1177/1468087419857602 U6 - https://doi.org/10.1177/1468087419857602 SN - 2041-3149 VL - 20 IS - 10 SP - 1089 EP - 1100 ER - TY - GEN A1 - Netzer, Corinna A1 - Franken, Tim A1 - Lehtiniemi, Harry A1 - Mauß, Fabian A1 - Seidel, Lars T1 - Numerical Analysis of the Impact of Water Injection on Combustion and Thermodynamics in a Gasoline Engine using Detailed Chemistry T2 - SAE technical papers Y1 - 2018 U6 - https://doi.org/10.4271/2018-01-0200 SN - 0148-7191 SN - 0096-5170 IS - 2018-01-0200 ER - TY - GEN A1 - Franken, Tim A1 - Duggan, Alexander A1 - Feng, Tao A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Matrisciano, Andrea A1 - Mauß, Fabian T1 - Multi-Objective Optimization of Fuel Consumption and NOx Emissions using a Stochastic Reactor Model, THIESEL 2018 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines KW - Multi-Objective Optimization Y1 - 2018 UR - https://www.researchgate.net/publication/328265385 ER - TY - GEN A1 - Franken, Tim A1 - Netzer, Corinna A1 - Pasternak, Michal A1 - Mauß, Fabian A1 - Seidel, Lars A1 - Matrisciano, Andrea A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Kulzer, André Casal T1 - Simulation of Spark-Ignited Engines with Water Injection using the Stochastic Reactor Model, 37th International Symposium on Combustion Y1 - 2018 UR - https://www.researchgate.net/publication/328265636 ER - TY - GEN A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Pasternak, Michal A1 - Lehtiniemi, Harry A1 - Perlman, Cathleen A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory T2 - International Journal of Engine Research N2 - Engine knock is an important phenomenon that needs consideration in the development of gasoline-fueled engines. In our days, this development is supported using numerical simulation tools to further understand and predict in-cylinder processes. In this work, a model tool chain which uses a detailed chemical reaction scheme is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition characteristics and the emissions are calculated using a gasoline surrogate reaction scheme containing pathways for oxidation of ethanol, toluene, n-heptane, iso-octane and their mixtures. The combustion is predicted using a combination of the G-equation based flame propagation model utilizing tabulated laminar flame speeds and well-stirred reactors in the burned and … KW - Engine knock is an important phenomenon Y1 - 2018 U6 - https://doi.org/10.1177/1468087417740271 SN - 1468-0874 SN - 2041-3149 VL - 19 IS - 1 SP - 33 EP - 44 ER - TY - GEN A1 - Werner, Adina A1 - Netzer, Corinna A1 - Lehtiniemi, Harry A1 - Borg, Anders A1 - Matrisciano, Andrea A1 - Seidel, Lars A1 - Mauß, Fabian T1 - A Computationally Efficient Combustion Progress Variable (CPV) Approach for Engine Applications KW - (CPV) Approach for Engine Applications Y1 - 2018 U6 - https://doi.org/10.13140/RG.2.2.15334.27209 ER - TY - GEN A1 - Werner, Adina A1 - Matrisciano, Andrea A1 - Netzer, Corinna A1 - Lehtiniemi, Harry A1 - Borg, Anders A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Further Application of the Fast Tabulated CPV Approach Y1 - 2018 UR - https://www.researchgate.net/publication/330737537 U6 - https://doi.org/10.13140/RG.2.2.18689.71529 N1 - 1st International Conference on Smart Energy Carriers ER - TY - GEN A1 - Nagy, Imre Gergely A1 - Matrisciano, Andrea A1 - Lehtiniemi, Harry A1 - Mauß, Fabian A1 - Schmid, Andreas T1 - Influence of nozzle eccentricity on spray structures in marine diesel sprays T2 - SAE technical papers N2 - Abstract: Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup odelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup. Firstly, the derived droplet distributions were … KW - Marine Diesel KW - Spray Y1 - 2017 SN - 0148-7191 SN - 0096-5170 N1 - Event: 13th International Conference on Engines & Vehicles IS - 2017-24-0031 ER - TY - GEN A1 - Matrisciano, Andrea A1 - Franken, Tim A1 - Perlman, Cathleen A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Mauß, Fabian T1 - Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model T2 - SAE technical papers KW - Development of a Computationally Efficient Progress Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-0512 SN - 0148-7191 SN - 0096-5170 IS - 2017-01-0512 SP - 18 Seiten ER -