TY - GEN A1 - González-Castaño, Miriam A1 - González-Arias, Judith A1 - Sánchez, Marta Elena A1 - Cara-Jiménez, Jorge A1 - Arellano-García, Harvey T1 - Syngas production using CO2-rich residues: From ideal to real operating conditions T2 - Journal of CO2 utilization KW - RWGS KW - Cu-Mn catalyst KW - CO2-rich residual gas KW - alumina KW - SiO2 KW - CeO2 Y1 - 2021 U6 - https://doi.org/10.1016/j.jcou.2021.101661 SN - 2212-9839 VL - 52 ER - TY - GEN A1 - González-Castaño, Miriam A1 - Dorneanu, Bogdan A1 - Arellano-Garcia, Harvey T1 - The Reverse Water Gas Shift Reaction: A Process Systems Engineering Perspective T2 - Reaction Chemistry & Engineering N2 - The catalytic reduction of CO2 into value-added products has been considered a compelling solution for alleviating global warming and energy crises. The reverse water gas shift (RWGS) reaction plays a pivotal role among the various CO2 utilization approaches, due to the fact that it produces syngas, the building block of numerous conversion processes. Although a lot of work has been carried out towards the development of a RWGS process, ranging from efficient catalytic systems to reactor units, and even pilot scale processes, there is still a lack of understanding of the fundamental phenomena that take place at the various levels and scales of the process. This contribution presents the main solutions and remaining challenges for a structured, trans- and multidisciplinary framework in which catalysis engineering and process systems engineering can work together to incorporate understanding and methods from both sides, to accelerate the investigation, creation and operation of an efficient industrial CO2 conversion process based on the RWGS reaction. KW - Reverse water gas shift reaction KW - syngas production KW - catalysts KW - process engineering Y1 - 2021 U6 - https://doi.org/10.1039/D0RE00478B SN - 2058-9883 ER - TY - GEN A1 - González-Castaño, Miriam A1 - Navarro de Miguel, Juan Carlos A1 - Pernkova, A. A1 - Centeno, Miguel Angel A1 - Odriozola, José Antonio A1 - Arellano-Garcia, Harvey T1 - Ni/YMnO3 perovskite catalyst for CO2 methanation T2 - Applied Materials Today N2 - Ni/YMnO3 perovskite catalyst for CO2 methanation KW - Ni catalysts KW - CO2 methanation KW - YMnO3 perovskites KW - manganites Y1 - 2021 U6 - https://doi.org/10.1016/j.apmt.2021.101055 VL - 23 ER - TY - GEN A1 - González-Castaño, Miriam A1 - Baena-Moreno, Francisco Manuel A1 - Navarro de Miguel, Juan Carlos A1 - Miah, Kamal Uddin Mohammad A1 - Arroyo-Torralvo, Fátima A1 - Ossenbrink, Ralf A1 - Odriozola, José Antonio A1 - Benzinger, Walther A1 - Hensel, Andreas A1 - Wenka, Achim A1 - Arellano-García, Harvey T1 - 3D-printed structured catalysts for CO2 methanation reaction: Advancing of gyroid-based geometries T2 - Energy Conversion and Management N2 - This work investigates the CO2 methanation rate of structured catalysts by tuning the geometry of 3D-printed metal Fluid Guiding Elements (FGEs) structures based on periodically variable pseudo-gyroid geometries. The enhanced performance showed by the structured catalytic systems is mostly associated with the capability of the FGEs substrate geometries for efficient heat usages. Thus, variations on the channels diameter resulted in ca. 25% greater CO2 conversions values at intermediate temperature ranges. The highest void fraction evidenced in the best performing catalyst (3D-1) favored the radial heat transfer and resulted in significantly enhanced catalytic activity, achieving close to equilibrium (75%) conversions at 400 ◦C and 120 mL/min. For the 3D-1 catalyst, a mathematical model based on an experimental design was developed thus enabling the estimation of its behavior as a function of temperature, spatial velocity, hydrogen to carbon dioxide (H2/CO2) ratio, and inlet CO2 concentration. Its optimal operating conditions were established under 3 different scenarios: 1) no restrictions, 2) minimum H2:CO2 ratios, and 3) minimum temperatures and H2/CO2 ratio. For instance, for the lattest scenario, the best CO2 methanation conditions require operating at 431 ◦C, 200 mL/min, H2/CO2 = 3 M ratio, and inlet CO2 concentration = 10 %. KW - 3D-printing KW - Triply periodic minimal surfaces KW - Fluid guiding elements KW - CO2 methanation KW - Structured catalysts KW - Experiment design Y1 - 2022 U6 - https://doi.org/10.1016/j.enconman.2022.115464 SN - 2590-1745 VL - 258 ER - TY - GEN A1 - Tarifa, Pilar A1 - Ramirez Reina, Tomas A1 - González-Castaño, Miriam A1 - Arellano-Garcia, Harvey T1 - Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl₂O₄ as a Bifunctional Catalyst T2 - Energy and Fuels N2 - Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading. Y1 - 2022 UR - https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01452 U6 - https://doi.org/10.1021/acs.energyfuels.2c01452 SN - 1520-5029 SN - 0887-0624 VL - 36 IS - 15 SP - 8267 EP - 8273 ER - TY - GEN A1 - Gonzalez-Arias, Judith A1 - Torres-Sempere, Guillermo A1 - Gonzalez-Castano, Miriam A1 - Baena-Moreno, Francisco Manuel A1 - Ramirez Reina, Tomas T1 - Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach T2 - Journal of Environmental Sciences N2 - Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies. Y1 - 2023 UR - https://www.sciencedirect.com/science/article/pii/S1001074223001766 U6 - https://doi.org/10.1016/j.jes.2023.04.019 SN - 1878-7320 VL - Vol. 140(2024) SP - 69 EP - 78 ER - TY - CHAP A1 - González-Castaño, Miriam A1 - Tarifa, Pilar A1 - Monzon, Antonio A1 - Arellano-Garcia, Harvey T1 - Valorization of unconventional CO2-rich feedstock via Reverse Water Gas Shift reaction T2 - Circular Economy Processes for CO2 Capture and Utilization : Strategies and Case Studies N2 - The implementation of novel CO2 valorization technologies is one of the most promising approaches towards the achievement of sustainable energy models. This chapter highlights the importance of carbon capture and utilization technologies and proposes novel approaches for the valorization of CO2-rich feedstock derived from thermochemical biomass conversion through the production of syngas mixtures via the Reverse Water Gas Shift reaction. After, this classification of the different types of nonconventional gases and biomass-treatment processes, we have also revised the fundamentals of the Reverse Water Gas Shift reaction and the impact of species commonly present in CO2-rich streams on the performance of the catalytic systems are also reviewed. Finally, a catalytic bi-functionalization approach that ensures larger CO productivity from simulated biomass-derived CO2-rich feedstock is demonstrated. KW - Reverse Water Gas Shift KW - Valorization of CO2 KW - Syngas KW - Catalysts Y1 - 2024 SN - 9780323956697 U6 - https://doi.org/10.1016/B978-0-323-95668-0.00001-1 SP - 307 EP - 323 PB - Woodhead Publishing ER - TY - GEN A1 - Tarifa, Pilar A1 - González-Castaño, Miriam A1 - Cazaña, F. A1 - Monzón, Antonio A1 - Arellano-García, Harvey T1 - Development of one-pot Cu/cellulose derived carbon catalysts for RWGS reaction T2 - Fuel N2 - A series of Cu-based catalysts promoted with Fe, Ce and Al supported on cellulose derived carbon (CDC) was prepared by biomorphic mineralization technique for the RWGS reaction. The excellent Cu dispersions (7 nm at ca. 30 wt% Cu) along with the resilience toward metal sintering attained in the entire catalysts series highlight one-pot decomposition of cellulose under reducing atmosphere as an excellent synthesis method which enable obtaining well-dispersed Cu nanoparticles. The influence of incorporating a second metal oxide over biomorphic mineralized Cu systems was also investigated. With the Cu-Ce system exhibiting the best catalyst performance of the catalysts’ series, the enhanced catalyst performances were majorly ascribed to the catalysts redox properties. The lineal relationships stablished between oxygen exchange capacity and CO2 conversion rates remarks the employed sequential H2/CO2 cycles as an effective methodology for screening the catalytic performance of Cu catalysts for RWGS reaction. KW - RWGS KW - Cu catalysts KW - Oxygen exchange capacity KW - Cellulose derived carbon Y1 - 2022 U6 - https://doi.org/10.1016/j.fuel.2022.123707 SN - 0016-2361 VL - Vol. 319 ER - TY - GEN A1 - Gonzalez-Castãno, Miriam A1 - Morales, Carlos A1 - Navarro de Miguel, Juan Carlos A1 - Boelte, Jens H. A1 - Klepel, Olaf A1 - Flege, Jan Ingo A1 - Arellano-García, Harvey T1 - Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts T2 - Green Energy & Environment N2 - Among challenges implicit in the transition to the post–fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes. Taking Ni and NiFe catalysts supported over γ-Al2O3 oxide as reference materials, this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO2 methanation. The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface. Displaying lower Turn Over Frequencies than Ni/Al catalyst, the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances. For NiFe catalysts, analogous Ni5Fe1 alloys were constituted over both alumina and biochar supports. The highest specific activity of the catalyst series, exhibited by the NiFe/C catalyst, was related to the development of surface basic sites along with weaker NiFe–C interactions, which resulted in increased Ni0:NiO surface populations under reaction conditions. In summary, the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama. KW - Biochar catalysts KW - Carbon catalysts KW - Ni catalysts KW - NiFe alloy KW - Bimetallic catalysts KW - Synthetic natural gas KW - CO2 methanation Y1 - 2023 U6 - https://doi.org/10.1016/j.gee.2021.05.007 SN - 2468-0257 VL - 8 IS - 3 SP - 744 EP - 756 ER -