TY - GEN A1 - Ulrich, Werner A1 - Batáry, Péter A1 - Baudry, Julia A1 - Beaumelle, Léa A1 - Bucher, Roman A1 - Čerevková, Andrea A1 - Garcia de la Riva, Enrique A1 - Felipe-Lucia, Maria R. A1 - Gallé, Róbert A1 - Kesse-Guyot, Emmanuelle A1 - Rembiałkowska, Ewa A1 - Rusch, Adrien A1 - Stanley, Dara A1 - Birkhofer, Klaus T1 - From biodiversity to health: Quantifying the impact of diverse ecosystems on human well-being T2 - People and Nature Y1 - 2023 U6 - https://doi.org/10.1002/pan3.10421 SN - 2575-8314 VL - 5 IS - 1 SP - 69 EP - 83 ER - TY - GEN A1 - Garcia de la Riva, Enrique A1 - Ulrich, Werner A1 - Batáry, Péter A1 - Baudry, Julia A1 - Beaumelle, Léa A1 - Bucher, Roman A1 - Čerevková, Andrea A1 - Felipe-Lucia, Maria R. A1 - Gallé, Róbert A1 - Kesse-Guyot, Emmanuelle A1 - Rembiałkowska, Ewa A1 - Rusch, Adrien A1 - Seufert, Verena A1 - Stanley, Dara A1 - Birkhofer, Klaus T1 - From functional diversity to human well-being: A conceptual framework for agroecosystem sustainability T2 - Agricultural Systems Y1 - 2023 U6 - https://doi.org/10.1016/j.agsy.2023.103659 SN - 1873-2267 SN - 0308-521X VL - 208 ER - TY - GEN A1 - Tölgyesi, Csaba A1 - Bátori, Zoltán A1 - Pascarella, John A1 - Erdős, László A1 - Török, Péter A1 - Batáry, Péter A1 - Birkhofer, Klaus A1 - Scherer, Laura A1 - Michalko, Radek A1 - Košulič, Ondřej A1 - Zaller, Johann G. A1 - Gallé, Róbert T1 - Ecovoltaics: Framework and future research directions to reconcile land-based solar power development with ecosystem conservation T2 - Biological Conservation N2 - Renewable energy production is gaining momentum globally as a way to combat climate change without drastically reducing human energy consumption. Solar energy offers the fastest developing solution. However, ground-mounted solar panels have a high land requirement, which leads to conflicts with other land use types, particularly agriculture and biodiversity conservation. The dual land use of agrivoltaics, i.e., continuing agricultural production under and between solar panels, may alleviate farmers' concerns, but less effort has been made to reconcile solar development with biodiversity conservation. Here we provide a framework for creating a win-win situation for this growing challenge using recent literature on solar park habitats complemented with ecological theories. We also highlight important knowledge gaps that future research should address. Our framework uses a unique land-sharing approach and is based on five pillars that cover key aspects of solar park planning and maintenance: (1) eco-smart siting in the landscape, which considers ecological interactions with the landscape matrix and trade-offs between multiple small vs. fewer large solar parks; (2) eco-smart park layout to address the ecological aspects of the spatial configuration of solar park infrastructure; (3) creation of diverse, novel grassland ecosystems with high ecosystem service provisioning capacity using a trait-based ecosystem design approach; (4) management of the novel ecosystem throughout the lifespan of the solar parks; and (5) ensuring stakeholder engagement to integrate this in a viable business model with high community acceptance. With this framework, we open the way for a new multifunctional land use type: the ecovoltaic park. Y1 - 2023 U6 - https://doi.org/10.1016/j.biocon.2023.110242 SN - 0006-3207 VL - 285 ER -