TY - GEN A1 - Zyakun, Anatoly A1 - Nii-Annang, Seth A1 - Franke, Gabriele A1 - Fischer, Thomas A1 - Buegger, Franz A1 - Dilly, Oliver T1 - Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils T2 - Geomicrobiology Journal N2 - The dynamics of microbial degradation of exogenous contaminants, n-hexadecane and its primary microbial oxidized metabolite, n-hexadecanoic (palmitic) acid, was studied for topsoils, under agricultural management and beech forest on the basis the changes in O2 uptake, CO2 evolution and its associated microbial and non-microbial carbon isotopic signature, the respiratory quotient (RQ) and the priming effect (PE) of substrates. Soil microbial communities in agricultural soil responded to the n-hexadecane addition more rapidly compared to those of forest soil, with lag-periods of about 23 ± 10 and 68 ± 13 hours, respectively. Insignificant difference in the lag-period duration was detected for agricultural (tlag = 30 ± 13 h) and forest (tlag = 30 ± 14 h) soils treated with n-hexadecanoic (palmitic) acid. These results demonstrate that the soil microbiota differed in metabolic activities for using n-hexadecane as a reductive hydrocarbon and n-hexadecanoic acid as a partly oxidized hydrocarbon. The corresponding δ13C of respired CO2 after the addition of the hydrocarbon contaminants to soils indicates a shift in microbial activity towards the consumption of exogenous substrates with a more complete degradation of n-hexadecane in the agricultural soil, for which some initial contents of hydrocarbons are inherent. It was reflected in the carbon isotope signature of microbial biomass. It is supposed that the observed deviation of RQ from theoretically calculated value under microbial substrate mineralization is determined by difference in the time (Δti) of registration of CO2 production and O2 consumption. Positive priming effect (PE) of n-hexadecane and negative PE of n-hexadecanoic (palmitic) acid were detected in agricultural and forest soils. It is suggested that positive PE of n-hexadecane is conditioned by the induction of microbial enzymes that perform hydroxylation/oxygenation of stable SOM compounds mineralized by soil microbiota to CO2. The microbial metabolism coupled with oxidative decarboxylation of n-hexadecanoic acid is considered as one of the most probable causes of the revealed negative PE value. Y1 - 2011 U6 - https://doi.org/10.1080/01490451.2010.489922 SN - 1521-0529 VL - 28 IS - 7 SP - 632 EP - 647 ER - TY - GEN A1 - Dilly, Oliver A1 - Nii-Annang, Seth A1 - Franke, Gabriele A1 - Fischer, Thomas A1 - Buegger, Franz A1 - Zyakun, Anatoly T1 - Resilience of microbial respiration, respiratory quotient and stable isotope characteristics to soil hydrocarbon addition T2 - Soil Biology and Biochemistry N2 - On the basis of CO2 evolution rate, O2 uptake rate, and 13C isotopic signature of respired CO2, the metabolic response to the addition of 13C labelled n-hexadecane and palmitic acid each with supplementary nitrogen was studied for two topsoils, one under continuous agricultural management and the other under beech forest. The CO2 evolution rate was immediately stimulated in the agricultural soil and the respiratory quotient (RQ) decreased from 0.8 to 0.4 mol CO2 evolution rate per mol O2 uptake rate, which was below the theoretically expected value of 0.65 and 0.70 for the degradation of n-hexadecane and palmitic acid, respectively. The microbial response was delayed in the forest soil, but developed better than in the agricultural soil throughout the subsequent 2–4 weeks. Consequently, the respiration rate returned earlier to the initial level for the beech forest soil and the δ13C of respired CO2 and RQ approached values before hydrocarbon addition. Based on the link among respiration rates, RQ and 13C–CO2 value, the added oil-analogue compounds induced a more rapid response in the agricultural soil and were degraded more completely in the forest soil. We concluded that the resilience, which we defined here as the capacity of the soil microbiota to buffer perturbance and to reorganise in response to change resulting in a more desirable system, was higher in our forest soil than for the agricultural soil. Y1 - 2011 U6 - https://doi.org/10.1016/j.soilbio.2010.09.026 SN - 0038-0717 VL - 43 IS - 9 SP - 1808 EP - 1811 ER - TY - GEN A1 - Dilly, Oliver A1 - Repmann, Frank A1 - Franke, Gabriele A1 - Grünewald, Holger A1 - Schneider, Bernd Uwe A1 - Hüttl, Reinhard F. T1 - Microbial Characteristics of Young Soils on Disposal Sites of Coal Combustion Waste in Bosnia and Herzegovina T2 - Geomicrobiology Journal N2 - Microbial communities are essential for a range of soil functions and adjust to soil development, environmental conditions and pollution level by community structure, abundance and activity. At desolated landfills of coal combustion waste (CCW) that were un-covered and covered with shallow soil material layers, soil microbial indicators were estimated for both the ecological and eco-toxicological evaluation. The young CCW sites with pH values of 9.5 and substantial coal-derived organic carbon showed significant microbial biomass content and nitrogen mineralization rates. At the 0 to 15 year old landfills, the microbial biomass content and activities increased significantly with age. However, large spatial variations occurred due to the variation of the cover material thickness, the degree of ash-aging and the tillage practices. Carbon dioxide was even sequestered at young CCW sites as indicated during laboratory incubation with an open apparatus purging continuously ambient air. In accordance, the respiratory quotient went down to 0.03 mol CO2 evolution rate per mol O2 uptake rate, indicating that the CO2 evolution rate is limited as an overall quality indicator. Within 15 years, these ‘Technosols’ showed pH values of 7.7 and decalcified while changes in microbial biomass content and activity rates were mainly related to N availability. We concluded that the available As, B, Cr and Ni pollution at CCW sites seemed largely immobilised by organic matter and alkalinity and therefore did not to inhibit the microbial colonisation and development of high microbial activity within 15 years. However, the ash disposals pose a contamination risk by wind erosion and a future risk to human or environmental health when toxic metals will be released in soil at low pH values, low organic matter and low antagonistic ion contents. Y1 - 2011 U6 - https://doi.org/10.1080/01490451.2010.512032 SN - 1521-0529 VL - 28 IS - 7 SP - 574 EP - 581 ER -