TY - GEN A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Castellani, Claudio T1 - Application of the Mattis-Bardeen theory in strongly disordered superconductors T2 - Physical Review B N2 - The low-energy optical conductivity of conventional superconductors is usually well described by Mattis-Bardeen (MB) theory, which predicts the onset of absorption above an energy corresponding to twice the superconducing (SC) gap parameter Δ. Recent experiments on strongly disordered superconductors have challenged the application of the MB formulas due to the occurrence of additional spectral weight at low energies below 2Δ. Here we identify three crucial items that have to be included in the analysis of optical-conductivity data for these systems: (a) the correct identification of the optical threshold in the Mattis-Bardeen theory and its relation with the gap value extracted from the measured density of states, (b) the gauge-invariant evaluation of the current-current response function needed to account for the optical absorption by SC collective modes, and (c) the inclusion into the MB formula of the energy dependence of the density of states present already above Tc. By computing the optical conductivity in the disordered attractive Hubbard model, we analyze the relevance of all these items, and we provide a compelling scheme for the analysis and interpretation of the optical data in real materials. KW - Superconductivity KW - Superconductivity fluctuations KW - Impurities in superconductors Y1 - 2017 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.144507 U6 - https://doi.org/10.1103/PhysRevB.96.144507 VL - 96 IS - 14 SP - 144507 ER - TY - GEN A1 - Noatschk, Katharina A1 - Hofmann, E. V. S. A1 - Dabrowski, J. A1 - Curson, N. J. A1 - Schröder, Thomas A1 - Klesse, Wolfgang Matthias A1 - Seibold, Götz T1 - Ge(001) surface reconstruction with Sn impurities T2 - Surface Science N2 - Defects play an important role for surface reconstructions and therefore also influence the substrate growth. In this work we present a first principle calculation for the Ge(001) surface without and with tin impurities incorporated into the top surface layer. By mapping the system onto an Ising-type model, with interaction constants taken from density functional theory, the stability of the surface reconstructions under the influence of different concentrations of tin impurities is explored. This approach allows us to simulate the possible phase transitions for the different surface reconstructions including the local structure around the tin impurity atoms. In addition, we compare our theoretical results with experimental STM images on clean and Sn-doped Ge(100) surfaces. KW - Gesn KW - DFT KW - Monte carlo simulations KW - Surface reconstruction KW - Impurities Y1 - 2021 UR - https://www.sciencedirect.com/science/article/pii/S0039602821001163?dgcid=author U6 - https://doi.org/10.1016/j.susc.2021.121912 VL - 713 SP - 1 EP - 8 ER - TY - GEN A1 - Oelsen, E. von A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Grilli, Marco T1 - Phonon renormalization from local and transitive electron-latticecouplings in strongly correlated systems Y1 - 2010 ER - TY - JOUR A1 - Lorenzana, José A1 - Seibold, Götz A1 - Ortix, C. A1 - Grilli, Marco T1 - Competing orders in FeAs layers Y1 - 2008 ER - TY - GEN A1 - Tea, C. A1 - Castellani, Claudio A1 - Seibold, Götz A1 - Benfatto, Lara T1 - Nonrelativistic Dynamics of the Amplitude (Higgs) Mode in Superconductors T2 - Physical Review Letters Y1 - 2015 UR - https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.157002 U6 - https://doi.org/http://dx.doi.org/10.1103/PhysRevLett.115.157002 SN - 1079-7114 VL - 115 SP - 157002 ER - TY - GEN A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Grilli, Marco A1 - Seibold, Götz T1 - Charge instabilities and electron-phonon interaction in the Hubbard-Holstein model T2 - Physical Review B KW - strongly correlated systems Y1 - 2009 SN - 1550-235X VL - 79 SP - 085101 ER - TY - GEN A1 - Mirarchi, Giovanni A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Caprara, Sergio T1 - The Strange-Metal Behavior of Cuprates T2 - Condensed Matter N2 - Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat. KW - high-temperature superconductors KW - cuprates KW - charge density fluctuations KW - strange metal KW - dynamical quantum criticality Y1 - 2022 UR - https://www.mdpi.com/2410-3896/7/1/29/htm U6 - https://doi.org/10.3390/condmat7010029 SN - 2410-3896 VL - 7 IS - 1 SP - 1 EP - 17 ER - TY - GEN A1 - Lemarié, Gabriel A1 - Kamlapure, Anand A1 - Benfatto, Lara A1 - Lorenzana, José A1 - Seibold, Götz A1 - Ganguli, S. C. A1 - Raychaudhuri, Pratap A1 - Castellani, Claudio T1 - Universal scaling of the order-parameter distribution in strongly disordered superconductors T2 - Physical Review B N2 - We investigate theoretically and experimentally the statistical properties of the inhomogeneous order-parameter distribution (OPD) at the verge of the superconductor-insulator transition (SIT). We find within two prototype fermionic and bosonic models for disordered superconductors that one can identify a universal rescaling of the OPD. By performing scanning-tunneling microscopy experiments in three samples of NbN with increasing disorder we show that such a rescaling also describes the experimental data with excellent accuracy. These results can provide a breakthrough in our understanding of the SIT. Y1 - 2013 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.184509 U6 - https://doi.org/10.1103/PhysRevB.87.184509 SN - 2469-9977 VL - 87 IS - 18 SP - 184509 ER - TY - GEN A1 - Mondal, Mintu A1 - Kumar, Sanjeev A1 - Chand, Madhavi A1 - Kamlapure, Anand A1 - Saraswat, Garima A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Raychaudhuri, Pratap T1 - Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.107.217003 ER - TY - GEN A1 - Seibold, Götz A1 - Becca, Federico A1 - Bucci, F. A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Spectral properties of incommensurate charge-density wave systems Y1 - 2000 ER - TY - JOUR A1 - Seibold, Götz A1 - Becca, Federico A1 - Lorenzana, José T1 - Time dependent Gutzwiller theory of pairing fluctuations in the Hubbard model JF - Physical Review B KW - Correlated electrons KW - Hubbard mode KW - Pairing correlations Y1 - 2008 SN - 0556-2805 VL - 78 SP - 045114 ER - TY - JOUR A1 - Lorenzana, José A1 - Seibold, Götz T1 - Unified description of charge and spin excitations of stripes in cuprates Y1 - 2007 ER - TY - JOUR A1 - Di Ciolo, A. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Grilli, Marco T1 - Paramagnetic stripes in cuprates: charge inhomogeneity coexisting with large Fermi surfaces Y1 - 2007 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo T1 - Fermi surface and electronic structure of incommensurate charge-density-wave systems Y1 - 2000 ER - TY - JOUR A1 - Seibold, Götz A1 - Becca, Federico A1 - Lorenzana, José T1 - Inhomogeneous Gutzwiller approximation with random phase fluctuationsfor the Hubbard model Y1 - 2003 ER - TY - JOUR A1 - Guenther, Falk A1 - Seibold, Götz A1 - Lorenzana, José T1 - Quantum Lifshitz point in the infinite dimensional Hubbard model Y1 - 2007 ER - TY - GEN A1 - Bill, Andreas A1 - Hizhnyakov, Vladimir A1 - Kremer, Reinhard K. A1 - Seibold, Götz A1 - Shelkan, Aleksander A1 - Sherman, Aleksei T1 - Phase Separation and Pairing Fluctuations in Oxide Materials T2 - Condensed Matter N2 - The microscopic mechanism of charge instabilities and the formation of inhomogeneous states in systems with strong electron correlations is investigated. We demonstrate that within a strong coupling expansion the single-band Hubbard model shows an instability towards phase separation and extend the approach also for an analysis of phase separation in the Hubbard-Kanamori hamiltonian as a prototypical multiband model. We study the pairing fluctuations on top of an inhomogeneous stripe state where superconducting correlations in the extended s-wave and d-wave channels correspond to (anti)bound states in the two-particle spectra. Whereas extended s-wave fluctuations are relevant on the scale of the local interaction parameter U, we find that d-wave fluctuations are pronounced in the energy range of the active subband which crosses the Fermi level. As a result, low energy spin and charge fluctuations can transfer the d-wave correlations from the bound states to the low energy quasiparticle bands. Our investigations therefore help to understand the coexistence of stripe correlations and d-wave superconductivity in cuprates. KW - phase separation KW - cuprate superconductors KW - electronic correlations Y1 - 2020 UR - https://www.mdpi.com/2410-3896/5/4/65/htm U6 - https://doi.org/10.3390/condmat5040065 SN - 2410-3896 VL - 5 IS - 4 ER - TY - GEN A1 - Seibold, Götz A1 - Capati, Matteo A1 - Grilli, Marco A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Hidden ferronematic order in underdoped cuprates T2 - Physical Review B N2 - We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order-parameter-like temperature dependence. Y1 - 2013 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.035138 U6 - https://doi.org/10.1103/PhysRevB.87.035138 SN - 2469-9969 VL - 87 IS - 3 SP - 035138 ER - TY - GEN A1 - Noatschk, Katharina A1 - Martens, Christian A1 - Seibold, Götz T1 - Time-Dependent Gutzwiller Approximation: Theory and Applications T2 - Journal of Superconductivity and Novel Magnetism N2 - The time-dependent Gutzwiller approximation is rederived on the basis of a variational wave function which is a direct product of a Slater determinant and a coherent state. The latter can be related to the slave-boson formulation by Kotliar and Ruckenstein, and our approach offers a convenient way to generalize the theory towards the implementation of symmetry-broken states and the study of non-equilibrium phenomena. We discuss the concept with regard to applications in the linear response limit and for quenched antiferromagnetic order for which we evaluate the optical conductivity in non-equilibrium situations. KW - Hubbard model KW - Gutzwiller approximation KW - Non-equilibrium Y1 - 2020 UR - https://link.springer.com/article/10.1007/s10948-019-05406-z#Sec1 U6 - https://doi.org/10.1007/s10948-019-05406-z VL - 33 IS - 8 SP - 2389 EP - 2393 ER - TY - JOUR A1 - Müller, Sebastian A1 - Seibold, Götz A1 - Schmeißer, Dieter ED - Vierhaus, Heinrich Theodor T1 - Preparation and Characterization of TiO2 Thin Films and Cr and Co Doped TiO2 Thin Films Y1 - 2007 ER - TY - JOUR A1 - Seibold, Götz A1 - Lorenzana, José T1 - Doping dependence of spin excitations in the stripe phase of high-Tc superconductors Y1 - 2006 ER - TY - GEN A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Spin excitations of ferronematic order in underdoped cuprate superconductors T2 - Scientific reports N2 - High-temperature superconductors exhibit a characteristic hourglass-shaped spectrum of magnetic fluctuations which most likely contribute to the pairing glue in the cuprates. Recent neutron scattering experiments in strongly underdoped compounds have revealed a significant low energy anisotropy of these fluctuations which we explain by a model in which topological defects of the antiferromagnet clump to producing domain wall segments with ferronematic order. This state does not invoke global charge order but breaks C4 rotational and inversion symmetry. The incommensurability of the low doping charge-disordered state is in good agreement with experiment and interpolates smoothly with the incommensurability of the stripe phase at higher doping. Within linear spin-wave theory the dynamic structure factor is in very good agreement with inelastic neutron scattering data and can account for the observed energy dependent anisotropy. Y1 - 2014 UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060504/ U6 - https://doi.org/10.1038/srep05319 SN - 2045-2322 IS - 4 SP - 5319 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz T1 - Gutzwiller magnetic phase diagram of the undoped $ t- t' -U $ Hubbard model Y1 - 2010 ER - TY - GEN A1 - Bünemann, Jörg A1 - Capone, Michael A1 - Lorenzana, José A1 - Seibold, Götz T1 - Linear-response dynamics from the time-dependent Gutzwiller approximation T2 - New Journal of Physics N2 - Within a Lagrangian formalism, we derive the time-dependent Gutzwiller approximation for general multi-band Hubbard models. Our approach explicitly incorporates the coupling between time-dependent variational parameters and a time-dependent density matrix from which we obtain dynamical correlation functions in the linear-response regime. Our results are illustrated for the one-band model where we show that the interacting system can be mapped to an effective problem of fermionic quasiparticles coupled to 'doublon' (double occupancy) bosonic fluctuations. The latter have an energy on the scale of the on-site Hubbard repulsion U in the dilute limit but become soft at the Brinkman–Rice transition, which is shown to be related to an emerging conservation law of doublon charge and the associated gauge invariance. Coupling with the boson mode produces a structure in the charge response and we find that a similar structure appears in dynamical mean-field theory. Y1 - 2013 UR - http://iopscience.iop.org/article/10.1088/1367-2630/15/5/053050 SN - 1367-2630 VL - 15 ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, José T1 - Stripes in cuprate superconductors: Excitations and dynamic dichotomy T2 - Physica C: Superconductivity N2 - We present a short account of the present experimental situation of stripes in cuprates followed by a review of our present understanding of their ground state and excited state properties. Collective modes, the dynamical structure factor, and the optical conductivity of stripes are computed using the time-dependent Gutzwiller approximation applied to realistic one band and three band Hubbard models, and are found to be in excellent agreement with experiment. On the other hand, experiments like angle-resolved photoemission and scanning tunneling microscopy show the coexistence of stripes at high energies with Fermi liquid quasiparticles at low energies. We show that a phenomenological model going beyond mean-field can reconcile this dynamic dichotomy. Y1 - 2012 UR - http://www.sciencedirect.com/science/article/pii/S0921453412001864 U6 - https://doi.org/10.1016/j.physc.2012.03.072 SN - 0921-4534 VL - 481 SP - 132 EP - 145 ER - TY - GEN A1 - Hizhnyakov, Vladimir A1 - Seibold, Götz T1 - Nanoscale phase separation in cuprate superconductors T2 - Physica C: Superconductivity and its Applications N2 - Electronic inhomogeneities are nowadays a well established feature of high-temperature superconductors, most prominently exemplified by the observation of charge-ordered states in a large number of cuprate materials. In this contribution we review the particular contribution of the Stuttgart-Tartu-Cottbus group to this field, which has been largely stimulated by intense discussion with K. Alex Müller. The original scenario, which was based on the formation of a percolative electronic network, is substantiated by a microscopic analysis of the clustering of magnetic polarons within the one-band Hubbard model. KW - Cuprates KW - Superconductors KW - Phase separation KW - Electronic inhomogeneities Y1 - 2023 UR - https://www.sciencedirect.com/science/article/pii/S0921453423001004 U6 - https://doi.org/10.1016/j.physc.2023.1354309 SN - 1873-2143 VL - 612 SP - 1 EP - 7 ER - TY - GEN A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Castellani, Claudio A1 - Lorenzana, José T1 - Current Correlations in Strongly Disordered Superconductors T2 - Journal of Superconductivity and Novel Magnetism Y1 - 2016 UR - http://link.springer.com/article/10.1007%2Fs10948-015-3300-6 U6 - https://doi.org/10.1007/s10948-015-3300-6 VL - 29 IS - 3 SP - 577 EP - 580 ER - TY - JOUR A1 - Seibold, Götz A1 - Lorenzana, José T1 - Stability of metallic stripes in the extended one-band Hubbard model Y1 - 2004 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Bansil, Arun T1 - Short range smectic order driving long range nematic order: example of cuprates T2 - Scientific reports Y1 - 2016 UR - http://www.nature.com/articles/srep19678 U6 - https://doi.org/10.1038/srep19678 SN - 2045-2322 VL - 6 SP - 19678 ER - TY - JOUR A1 - Günther, Falk A1 - Seibold, Götz T1 - Time-dependent Gutzwiller theory of pair fluctuations in the Hubbard model Y1 - 2007 ER - TY - GEN A1 - Benfatto, Lara A1 - Castellani, Claudio A1 - Seibold, Götz T1 - Linear and nonlinear current response in disordered d-wave superconductors T2 - Physical Review B N2 - We present a detailed theoretical investigation of the linear and nonlinear optical response in a model system for a disordered d-wave superconductor. By evaluating the quasiparticle contribution (BCS response) we show that for both quantities the gap symmetry considerably changes the paradigm of the optical response as compared to the conventional s-wave case. For what concerns the linear response our findings agree with previous work showing that in strongly disordered d-wave superconductors a large fraction of uncondensed spectral weight survives below Tc, making the optical absorption around the gap-frequency scale almost unchanged with respect to the normal state. Our numerical results are in excellent quantitative agreement with experiments in overdoped cuprates. In the nonlinear regime we focus on the third-harmonic generation (THG), finding that, as already established for the s-wave case, in general a large THG is triggered by disorder-activated paramagnetic processes. However, in the d-wave case the BCS response is monotonously increasing in frequency, losing any signature of THG enhancement when the THz pump frequency ω matches the gap maximum Δ, a hallmark of previous experiments in conventional s-wave superconductors. Our findings, along with the mild polarization dependence of the response, provide an explanation for recent THG measurements in cuprates, setting the framework for the theoretical understanding of nonlinear effects in unconventional cuprates. KW - Superconducting order parameter KW - Superfluid density KW - High-temperature superconductors KW - Superconductivity KW - Drude model KW - Numerical techniques KW - Reflectivity KW - Terahertz spectroscopy Y1 - 2023 UR - https://journals.aps.org/prb/abstract/10.1103/PhysRevB.108.134508 U6 - https://doi.org/10.1103/PhysRevB.108.134508 SN - 2469-9969 SN - 2469-9950 VL - 108 SP - 134508-1 EP - 134508-15 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Fermi surface and photoemission lineshape of incommensurate CDW systems Y1 - 2000 ER - TY - JOUR A1 - Sigmund, Ernst A1 - Hizhnyakov, Vladimir A1 - Seibold, Götz T1 - Phase-Separation in High-Tc Superconductors JF - Physica C : Superconductivity Y1 - 1994 SN - 0921-4534 VL - Vol. 235–240 IS - 1 SP - 253 EP - 256 ER - TY - JOUR A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, José T1 - Checkerboard and stripe inhomogeneities in cuprates JF - Physical review B Y1 - 2007 SN - 1550-235X VL - 75 IS - 10 SP - 10050(R) ER - TY - GEN A1 - Ugenti, S. A1 - Cini, M. A1 - Seibold, Götz A1 - Lorenzana, José A1 - Perfetto, E. A1 - Stefanucci, G. T1 - Particle-particle response function as a probe for electronic correlations in the p-d Hubbard model Y1 - 2010 ER - TY - GEN A1 - Seibold, Götz A1 - Varlamov, Sergej T1 - Effect of incommensurate charge-density wave scattering on theelectronic structure of high-Tc cuprates (I) T2 - Journal of Superconductivity Y1 - 2002 SN - 0896-1107 VL - 15 IS - 5 SP - 387 EP - 388 ER - TY - CHAP A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco ED - Bianconi, Antonio ED - Saini, Naurang L. T1 - Domain wall structures in the two-dimensional Hubbard modelwith long-range Coulomb interaction T2 - Stripes and Related Phenomena Y1 - 2000 SN - 0-306-46419-5 U6 - https://doi.org/10.1007/0-306-47100-0_18 SP - 151 EP - 157 PB - Kluwer Academic Plenum CY - New York ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, José T1 - Model of Quasiparticles Coupled to a Frequency-Dependent Charge-DensityWave Order Parameter in Cuprate Superconductors Y1 - 2009 ER - TY - GEN A1 - Seibold, Götz A1 - Markiewicz, Richard S. A1 - Lorenzana, José T1 - Stripes with Spin Canting in the Three-Band Hubbard Model T2 - Journal of Superconductivity and Novel Magnetism N2 - In underdoped cuprates, both stripes and spiral states may account for the incommensurate spin response observed by elastic neutron scattering experiments. Here, we investigate the respective stability of both textures within the framework of the three-band Hubbard model which we treat within the unrestricted Gutzwiller approximation. Our calculations indicate that for parameter sets appropriate for lanthanum cuprates and small doping nor purely longitudinal stripes nor uniform spirals are stable but stripes with significant spin canting. Indeed at small doping uniform spirals are unstable toward nanoscale phase separation. KW - Stripes KW - Spirals KW - High-temperature superconductors Y1 - 2013 UR - http://link.springer.com/article/10.1007/s10948-012-1701-3 U6 - https://doi.org/10.1007/s10948-012-1701-3 SN - 1557-1939 SN - 1557-1947 VL - 26 IS - 1 SP - 49 EP - 52 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Striped phases in the two-dimensional Hubbard model with long-rangeCoulomb interaction Y1 - 1998 ER - TY - GEN A1 - Seibold, Götz A1 - Lorenzana, José T1 - Diagonal stripes in the spin glass phase of cuprates T2 - Physica : C Y1 - 2009 N1 - Proceedings of the 9th International Conference on Materials andMechanisms of Superconductivity VL - 470 IS - Suppl. 1 SP - 245 EP - 246 ER - TY - GEN A1 - Seibold, Götz A1 - Markiewicz, Richard S. A1 - Lorenzana, José T1 - Magnetic Structure of Electronic Inhomogeneities in Cuprates: Competition between Stripes and Spirals T2 - Acta Physica Polonica A N2 - It is shown that the magnetic structure of high-T c superconductors is strongly influenced by the next-nearest neighbor hopping parameter t' which distinguishes different families of cuprates. Our investigations indicate that uniform spirals get favored by a large t'=t ratio but are unstable at small doping towards stripes with spin canting. For large /t'/t/ spirals can be stabilized under certain conditions in the overdoped regime which may explain the elastic incommensurate magnetic response recently observed in iron-co-doped Bi2201 materials. Y1 - 2012 UR - https://www.researchgate.net/publication/230739012_Magnetic_Structure_of_Electron ic_Inhomogeneities_in_Cuprates_Competition_between_Stripes_and_Spirals SN - 1898-794X VL - 121 IS - 5-6 SP - 1019 EP - 1021 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco ED - Barnes, Stewart E. T1 - Role of the long-range Coulomb interaction on the formation of striped phases in the two-dimensional Hubbard model T2 - High temperature superconductivity, Coral Gables, Florida, January 1999 Y1 - 1999 SN - 1-56396-880-0 U6 - https://doi.org/10.1063/1.59651 PB - AIP Publishing CY - Melville, New York ER - TY - GEN A1 - Seibold, Götz A1 - Grilli, Marco A1 - Lorenzana, José T1 - Dynamical charge and spin density wave scattering in cuprate superconductors Y1 - 2010 ER - TY - GEN A1 - Capati, Matteo A1 - Caprara, Sergio A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Seibold, Götz A1 - Lorenzana, José T1 - Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates T2 - Nature Communications N2 - Empirical evidence in heavy fermion, pnictide and other systems suggests that unconventional superconductivity appears associated to some form of real-space electronic order. For the cuprates, despite several proposals, the emergence of order in the phase diagram between the commensurate antiferromagnetic state and the superconducting state is not well understood. Here we show that in this regime doped holes assemble in ‘electronic polymers’. Within a Monte Carlo study, we find that in clean systems by lowering the temperature the polymer melt condenses first in a smectic state and then in a Wigner crystal both with the addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order and with the persistence of a thermodynamic transition. Such electronic phases, whose properties are reminiscent of soft-matter physics, produce charge and spin responses in good accord with experiments. KW - Molecular electronics KW - Polymers KW - Superconducting properties and materials Y1 - 2015 UR - http://www.nature.com/articles/ncomms8691 U6 - https://doi.org/doi:10.1038/ncomms8691 SN - 2041-1723 VL - 6 SP - 7691 ER - TY - GEN A1 - Cea, Tommaso A1 - Bucheli, Daniel A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Lorenzana, José A1 - Castellani, Claudio T1 - Optical excitation of phase modes in strongly disordered superconductors T2 - Physical Review B N2 - According to the Goldstone theorem the breaking of a continuous U(1) symmetry comes along with the existence of low-energy collective modes. In the context of superconductivity these excitations are related to the phase of the superconducting (SC) order parameter and for clean systems are optically inactive; that is, single-mode excitations do not directly couple to light. Here we show that for strongly disordered superconductors phase modes acquire a dipole moment and appear as a subgap spectral feature in the optical conductivity. This finding is obtained with both a gauge-invariant random-phase approximation scheme based on a fermionic Bogoliubov–de Gennes state and a prototypical bosonic model for disordered superconductors. In the strongly disordered regime, where the system displays an effective granularity of the SC properties, the optically active dipoles are linked to the isolated SC islands, offering a new perspective for realizing microwave optical devices. Y1 - 2014 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174506 U6 - https://doi.org/10.1103/PhysRevB.89.174506 SN - 2469-9969 VL - 89 SP - 174506 ER - TY - GEN A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Castellani, Claudio A1 - Lorenzana, José T1 - Amplitude, density, and current correlations of strongly disordered superconductors T2 - Physical Review B N2 - We investigate the disorder dependence of the static density, amplitude, and current correlations within the attractive Hubbard model supplemented with onsite disorder. It is found that strong disorder favors a decoupling of density and amplitude correlations due to the formation of superconducting (SC) islands. This emergent granularity also induces an enhancement of the density correlations on the SC islands whereas amplitude fluctuations are most pronounced in the “insulating” regions. While density and amplitude correlations are short ranged at strong disorder, we show that current correlations have a long-range tail due to the formation of percolative current paths in agreement with the constant behavior expected from the analysis of one-dimensional models. Y1 - 2015 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064512 U6 - https://doi.org/10.1103/PhysRevB.92.064512 SN - 2469-9969 VL - 92 IS - 6 SP - 064512 ER - TY - GEN A1 - Markiewicz, Richard S. A1 - Lorenzana, José A1 - Seibold, Götz A1 - Bansil, Arun T1 - Competing phases on the cuprates: Charge vs spin order Y1 - 2011 ER - TY - GEN A1 - Grilli, Marco A1 - Seibold, Götz A1 - Di Ciolo, A. A1 - Lorenzana, José T1 - Fermi surface dichotomy in systems with fluctuating order T2 - Physical Review B Y1 - 2009 SN - 1550-235X VL - 79 SP - 125111 ER - TY - JOUR A1 - Seibold, Götz A1 - Becca, Federico A1 - Rubin, P. A1 - Lorenzana, José T1 - Time-dependent Gutzwiller theory of magnetic excitations in the Hubbard model Y1 - 2004 ER -