TY - CHAP A1 - Stelldinger, Marco A1 - Giersch, Thomas A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold T1 - A Semi-Unstructured Turbomachinery Meshing Library With Focus on Modeling of Specific Geometrical Features T2 - ECCOMAS VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete, Greece, June 5-10, 2016 N2 - Computational Fluid Dynamics is widely used for the analysis and the design of turbomachinery blade rows. A well established method is the application of semi-unstructured meshes, that uses a combination of structured meshes in the radial direction and unstructured meshes in the axial as well as the tangential direction. This takes advantage of the approximately two dimensional flow field through the blade rows, whereby a fine radial discretization, excepting the near wall region, is not necessary. Otherwise, it is possible to discretize particular regions, e.g. the leading and trailing edge regions, in the axial and tangential direction without generating unnecessary nodes in the far field. The meshing approach is based on the projection of a two dimensional unstructured mesh defined at a reference surface. Once, the two dimensional mesh is generated the projection is achieved by transfinite interpolation from the reference surface to further radial surfaces using a structured mesh. Due to the modeling of geometrical features, especially fillets, advanced methods for the generation of structured meshes and mesh smoothing algorithms are required. The paper presents two different approaches for the generation of an appropriate structured mesh. The first is based on the solution of elliptic partial differential equations. The second approach is based on the split of the domain into fourteen appropriately arranged blocks. Furthermore, two smoothing methods for two dimensional unstructured meshes, a constrained Laplace smoothing and an optimization based approach, are presented. Regarding a more realistic representation of the geometry, methods for the modeling of cavities, variable clearance sizes and fillets are presented. Finally, a comparison of the smoothing techniques applied to a rotor passage is presented and the influence of chosen geometrical features on the flow solution is evaluated. Y1 - 2016 UR - https://www.eccomas2016.org/proceedings/pdf/7554.pdf ER - TY - GEN A1 - Beirow, Bernd A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Bornholm, Alfons T1 - Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning T2 - Journal of Engineering for Gas Turbines and Power N2 - The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated. KW - Modal Analyses KW - Turbines Y1 - 2018 UR - http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=2649209#Abstract U6 - https://doi.org/10.1115/1.4037588 SN - 0742-4795 SN - 1528-8919 VL - 140 IS - 1 SP - 012503-1 EP - 012503-11 ER - TY - GEN A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Bornholm, Alfons A1 - Repetckii, Oleg V. T1 - Forced Response Reduction of a Blisk by Means of Intentional Mistuning T2 - Journal of Engineering for Gas Turbines and Power N2 - The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes. Y1 - 2019 UR - http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=2687503 U6 - https://doi.org/10.1115/1.4040715 SN - 1528-8919 SN - 0742-4795 VL - 141 IS - 1 SP - 011008-1 EP - 011008-8 ER - TY - GEN A1 - Beirow, Bernd A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Bornholm, Alfons T1 - Vibration Analysis of an Axial Turbine Blisk with Optimized Intentional Mistuning Pattern T2 - Journal of Sound and Vibration N2 - With the objective of attenuating the forced response of an axial turbine blisk for ship Diesel engine applications efforts have been made to increase the aerodynamic damping contribution for the most critical modes. In this regard the potential of intentional mistuning is investigated since it offers the opportunity to ensure a safe operation without a severe loss of aerodynamic performance. Genetic algorithms have been chosen to derive an optimized mistuning pattern resulting in a forced response clearly below that of the tuned counterpart. In order to keep the manufacturing effort within a limit only two possible blade geometries are allowed, which means that an integer optimization problem has been formulated. For the purpose of demonstrating the benefit of the intentional mistuning pattern found, two blisk prototypes have been manufactured: One with and another one without employing intentional mistuning for purposes of comparison. Furthermore, this offers the opportunity for an experimental determination of actually manufactured mistuning and other modal properties as well. The experimental data basis is employed to update structural models, which are well suited to demonstrate the forced response reduction under operational conditions. Finally, the robustness of the gain achieved with intentional mistuning could be proved towards both additional but unavoidable random structural and aerodynamic mistuning. KW - Balde integradet disk KW - Intentional mistuning KW - Vibration KW - Forced response KW - Optimization Y1 - 2019 U6 - https://doi.org/10.1016/j.jsv.2018.10.064 SN - 0022-460X VL - 442 SP - 11 EP - 27 ER - TY - GEN A1 - Figaschewsky, Felix A1 - Hanschke, Benjamin A1 - Kühhorn, Arnold T1 - Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors T2 - Journal of Engineering for Gas Turbines and Power KW - Vibration KW - Blades KW - Deflection KW - Engines KW - Probes KW - Signals KW - Rotors KW - Uncertainty KW - Errors KW - Simulation Y1 - 2018 U6 - https://doi.org/10.1115/1.4040748 SN - 0742-4795 SN - 1528-8919 VL - 141 IS - 1 ER - TY - GEN A1 - Figaschewsky, Felix A1 - Hanschke, Benjamin A1 - Kühhorn, Arnold T1 - Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors T2 - ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11–15, 2018 N2 - In modern compressors the assessment of blade vibration levels as well as health monitoring of the components are fundamental tasks. Traditionally, this assessment is done by the application of strain gauges to some blades of the assembly. In contrast to strain gauges, blade tip timing (BTT) offers a contactless monitoring of all blades of a rotor and there is no need of a telemetry system. A major issue in the interpretation of BTT data is the heavily undersampled nature of the signal. Usually, newly developed BTT algorithms are tested with sample data created by simplified structural models neglecting many of the uncertainties and disturbing influences of real applications. This work focuses on the creation of simulated BTT datasets as close as possible to real case measurements. For this purpose a subset of nominal system modes (SNM) representation of a compressor rotor is utilized. This model is able to include a large number of features present in real measurements, such as mistuning, static blade deflections due to centrifugal loads, aerodynamic damping and multiple mode resonances. Additionally, manufacturing deviations of the blade geometry, probe positioning errors in the BTT system and noise in the time of arrivals (TOAs) are captured by the BTT simulation environment. The main advantage of the created data is the possibility to steadily increase the signal complexity. Starting with a “perfect” signal the simulation environment is able to add different uncertainties one after the other. This allows the assessment of the influence of different features occurring in real measurements on the performance and accuracy of the analysis algorithms. Finally, a comparison of simulated BTT data and real data acquired from a rig test is shown to validate the presented approach of BTT data generation. Copyright © 2018 by Rolls-Royce Deutschland Ltd & Co KG KW - Engines KW - Rotors Y1 - 2018 SN - 978-0-7918-5115-9 U6 - https://doi.org/10.1115/GT2018-76342 PB - ASME CY - New York, NY ER - TY - GEN A1 - Franz, Falco A1 - Kühhorn, Arnold A1 - Giersch, Thomas A1 - Schrape, Sven A1 - Figaschewsky, Felix T1 - Influence of Inlet Distortions on the Forced Vibration of a High Pressure Compressor Rig T2 - ASME 2020 Turbo Expo - Virtual Conference, September 2020 N2 - The accurate prediction of blade vibrations is a key factor for the development of reliable turbomachines. This paper focusses on forced vibrations. The excitation frequency is an integer multiple of the rotor revolution frequency, which is commonly called engine order. Aerodynamic excitation of blades is created by stator wakes or the potential fields of downstream obstacles, which usually leads to high engine orders correlating to the number of vanes. Resonance crossings appear at higher frequencies corresponding to higher modes. Besides high engine orders, low engine orders not related to the number of vanes may exist. They can be caused by a disturbance of the perfect cyclic symmetry of the flow pattern due to geometry variations or inlet distortions. Inlet distortions result from installation effects, maneuvers or crosswind. Low engine orders affect fundamental modes at high engine speeds. High static loads due to centrifugal forces combined with dynamic excitation and low damping may lead to unacceptable high stresses. This paper aims at getting a better understanding of the simulative prediction of low engine order excitation with special focus on inlet distortions. Under investigation is a 4.5 stage research compressor rig, for which an extensive amount of test data is available. A three dimensional CFD-model of the compressor is used to compute the forcings generated by different distortion patterns. The first two stages are modeled as a full-annulus, which allows to fully resolve the spatial content of the inlet distortion patterns. The rotor 2 blisk is of special interest in this investigation. The propagation of the distortion after stage 2 with rotor 2 is not of interest, therefore the downstream stages are modeled as single passages in order to save computational time. The distortion patterns are the outcome of traversals of different screens with total pressure probes. During distortion measurements, the screens located in the inlet duct were rotated relative to the fixed instrumentation. The traversals in resonance of the first bending mode of rotor 2 with a low engine order four showed a dependency of the screen angle on the vibration amplitude. Acceleration and deceleration maneuvers through this resonance were conducted with screen angles set to those of smallest and highest response. Vibration amplitudes of the blisk rotor are measured by strain gauges and a blade tip timing system. Simulation results are compared against vibration measurements. Aerodynamic damping is calculated with the influence coefficient method. The effects of mistuning are included in the calculation of vibration amplitudes via a subset of nominal system modes model to give a meaningful comparison against real engine hardware. The mistuning distribution of the blisk was identified at rest for the fundamental bending mode. The presence of a 2nd excitation mechanism of unknown source explains the observed test data. This unknown source is not included in the CFD model. A direct comparison of simulation and measurement is still possible by leveraging the observed superposition effects of both excitation sources. The consequent approach is to identify and substract the forcing due to the unknown source, leaving only the delta forcing due to inlet distortions. Y1 - 2020 UR - https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/4675/application/46115 ER - TY - GEN A1 - ElMasry, Seif A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix T1 - Investigation of Working Line Variation Onto Forced Response Vibrations of a Compressor Blisk T2 - Turbo Expo 2021, Virtual Conference and Exhibition: September 21, 2020 N2 - Avoidance of high vibration amplitudes of rotor blades on the conventional working line of the compressor is a design requirement. However, rotors of aircraft engine compressors could temporarily operate near choke and stall conditions, due to transient manoeuvers or deterioration. As a result, the vibration levels might change, which could lead to a premature high cycle fatigue of the blades. This paper aims at studying the effect of different throttle positions at five constant aerodynamic speed lines ranging from 60% to 100% of the maximum speed onto the resulting vibration amplitudes and aerodynamic damping values on an integrally bladed disk (blisk) of a transonic research compressor. Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations are performed via an automated workflow, which reads aerodynamic data of the operating points of interest and runs all necessary aeromechanic computations along with their corresponding post-processing routines to calculate the resulting system response and amplitude frequency values. Using this workflow, Eigenfrequencies and mode-shapes of the rotor blades are obtained through multiple FEA simulations that are automatically executed at all relevant shaft speeds. The time-averaged flow pressure field on the blades is extracted from steady CFD simulations of the whole compressor and mapped onto the structural mesh of the rotor. Through a Spokes diagram, operating points in close proximity to resonance spots are identified, as well as their corresponding excited vibration modes. To obtain the time-variable flow pressure fields on the blades, unsteady CFD simulations are performed using a single passage model of the rotor with its upstream and downstream stators, as space-time periodicity of the flow data across the annulus is assumed. Additionally, a CFD rotor model with only a quarter section of the full annulus is built, where a unidirectional coupling approach between the structure and the fluid is applied to calculate the aerodynamic damping values. The calculated vibration amplitudes at engine orders of interest are then compared to strain gauge readings of a corresponding rig test. After validation of the simulation data, the sensitivity of the forced response due to working line variations is studied. Looking at the maximum aerodynamic speed line, it is clear that operating points near compressor stall are accompanied by high vibration response relative to the aerodynamic design point. A possible reason for this amplification is the change of flow incidence and the increase of pressure loss at the upstream blade-row. However, this effect becomes less articulated in the lower speed lines, where amplitudes of the forced vibrations change only slightly between different throttling positions. In this paper, the three-dimensional flow inside the passages is also carefully studied, which allows to better understand the relationship between flow characteristics and the resulting vibration response of compressor blades. Y1 - 2020 UR - https://asme-turboexpo.secure-platform.com/a/solicitations/105/sessiongallery/5322/application/45655 ER - TY - CHAP A1 - Beirow, Bernd A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold T1 - An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning, Part 2: Application to Blisks at Rest T2 - Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, ISUAAAT15, 24-27 September 2018, University of Oxford, UK Y1 - 2018 UR - https://www-docs.b-tu.de/fg-strukturmechanik/public/ISUAAAT15-021-Beirow_Kuehhorn_Figaschewsky-SystemID_Part2.pdf PB - ISUAAAT Scientific Committee ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold T1 - An Inverse Approach to Identify Tuned Aerodynamic Damping, System Frequencies, and Mistuning, Part 1: Theory Under Rotating Conditions T2 - Proceedings of the 15th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, ISUAAAT15, 24-27 September 2018, University of Oxford, UK Y1 - 2018 UR - https://www-docs.b-tu.de/fg-strukturmechanik/public/ISUAAAT15-048-Figaschewsky_Kuehhorn-SystemID_Part1.pdf PB - ISUAAAT Scientific Committee ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Bornholm, Alfons A1 - Repetckii, Oleg V. T1 - Forced Response Reduction of a Blisk by Means of Intentional Mistuning T2 - ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 7C: Structures and Dynamics, Oslo, Norway, June 11–15, 2018 N2 - The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible only two blade different geometries have been allowed which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for the purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes. KW - Engines KW - Manufactoring KW - Simulation KW - Turbochargers KW - Damping KW - Optimization Y1 - 2018 SN - 978-0-7918-5115-9 U6 - https://doi.org/10.1115/GT2018-76584 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Giersch, Thomas T1 - A Finite Element Based Least Square Fit for the Assessment of Integral and Non-Integral Vibrations With Blade Tip Timing T2 - Proceedings of ISROMAC 2017, Maui, Hawaii, December 16-21, 2017 N2 - This paper aims at improving the robustness and accuracy of the least square fit technique utilized in blade tip timing (BTT) measurements of blade vibrations by proposing two modifications. The first proposal is to replace the lines of the original least square problem by differences of consecutive lines. Thereby, the static deflection as well as the circumferential blade positioning error cancels out and the robustness is improved by removing these uncertainties inherently. The second proposal is to replace the fit of piecewise constant vibration amplitudes within the chosen block length by a linear or cubic spline in the frequency (integral) or time (non-integral) regime. This does not only suppress overshoots due to distorted acceleration or deceleration manoeuvres but also allows for a ”coarser analysis grid” (i.e. larger block length) without loosing amplitude accuracy. Thereby it smooths out random errors more efficiently and increases the orthogonality of the relevant EO or vibration frequency to unwanted signal components. KW - Blade Tip Timing KW - Non-Intrusive Measurements KW - Blade Vibration Y1 - 2017 UR - http://isromac-isimet.univ-lille1.fr/index.php?rubrique=abstract17_&num=2 ER - TY - CHAP A1 - Beirow, Bernd A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Bornholm, Alfons T1 - Vibration Analysis of an Axial Turbine Blisk with Optimized Intentional Mistuning Pattern T2 - Proceedings of ISROMAC 2017, Maui, Hawaii, December 16-21, 2017 N2 - Aiming to limit the forced response of an axial turbine blisk for ship Diesel engine applications efforts have been made to increase the aerodynamic damping contribution for the most critical modes. In this regard the potential of intentional mistuning is investigated since it offers the opportunity to ensure a safe operation without a severe loss of aerodynamic performance. Genetic algorithms have been chosen to derive an optimized mistuning pattern. In order to keep the manufacturing effort within a limit only two possible blade geometries are allowed which means that an integer optimization problem has been formulated. For the purpose of demonstrating the benefit of the intentional mistuning pattern found, two blisk prototypes have been manufactured: One with and another one without employing intentional mistuning for purposes of comparison. Furthermore, this offers the opportunity for an experimental determination of mistuning being really manufactured and other modal properties as well. The experimental data basis is employed to update structural models which are well suited to demonstrate the forced response reduction under operational conditions. KW - Blisk KW - Intentional Mistuning KW - Low Engine Order Excitation Y1 - 2017 UR - http://isromac-isimet.univ-lille1.fr/index.php?rubrique=abstract17_&num=21 ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Analysis of Mistuned Forced Response in an Axial High Pressure Compressor Rig With Focus on Tyler-Sofrin Modes T2 - ISABE 2017, ISABE-2017-22614, Manchester, September 3.-8., 2017 Y1 - 2017 PB - ISABE ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Hönisch, Peter A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Model Update and Validation of a Mistuned High Pressure Compressor Blisk T2 - Proceedings of ISABE 2017, ISABE-2017-22568, Manchester, September 3.-8., 2017 Y1 - 2017 UR - https://isabe2017.org/ PB - ISABE ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Giersch, Thomas A1 - Kühhorn, Arnold T1 - Forced Response Prediction of an Axial Turbine Rotor With Regard to Aerodynamically Mistuned Excitation T2 - ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics, Düsseldorf, Germany, June 16–20, 2014, Paper GT2014-25896 N2 - The design of both efficient and reliable turbomachinery blades demands a detailed knowledge of static and dynamic forces during operation. This paper aims to contribute to the proper identification of dynamic excitation mechanisms acting on an axial turbine rotor, particularly with regard to deviations of the NGV’s nominal geometry due to the use of variable vanes or tolerances in manufacturing. As variations of the NGV’s geometry disturb the perfectly periodic pattern of the downstream flow features, other spectral components than those correlated with the number of stator vanes are possible to appear. These frequency components may lead to low engine order excitation of fundamental blade modes at high engine speeds. Under these operating conditions the rotor is already highly loaded with centrifugal forces and additional dynamic excitation may cause unacceptable stresses. Thus aerodynamic mistuning might be a limiting criterion for the design of a highly loaded turbine rotor. Within this paper 2 dimensional CFD-models are used to investigate both, the determination of the wake of a geometric mistuned stator guide vane and the influence of the resulting excitation on the adjacent rotor stage due to aerodynamically mistuned flow. In order to generate a mistuned NGV geometry, variations of pitch and stagger angle are taken into account and a mesh morpher is used to produce computational domains of the mistuned geometry on the basis of a nominal mesh. Additionally a simplified reconstruction process based on a set of CFD computations will be introduced, being able to reproduce the spectral components of the mistuned wake by specifying a certain geometric mistuning distribution. The prediction of the resulting modal forces is carried out in time domain and approaches with lower fidelity are investigated with respect to their capability of reproducing the key features of an aerodynamically mistuned excitation mechanism. KW - Rotors KW - Turbines Y1 - 2014 SN - 978-0-7918-4577-6 U6 - https://doi.org/10.1115/GT2014-25896 PB - ASME ER - TY - CHAP A1 - Giersch, Thomas A1 - Figaschewsky, Felix A1 - Hönisch, Peter A1 - Kühhorn, Arnold A1 - Schrape, Sven T1 - Numerical Analysis and Validation of the Rotor Blade Vibration Response Induced by High Pressure Compressor Deep Surge T2 - ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 7B: Structures and Dynamics Düsseldorf, Germany, June 16–20, 2014, Paper GT2014-26295 N2 - The following paper presents a numerical analysis of a deep surge cycle of a 4.5 stage research compressor. The resulting unsteady loads are used to determine the response of two particular rotor blade rows that are then compared to strain gauge data from measurements. Within a deep surge cycle the compressor experiences a rapid change of the flow field from forward to reversed flow. This rapid breakdown is linked to a new mean blade load. Hence, the rapid change in blade loads are able to excite fundamental blade modes similar to an impulse load. The resulting vibration magnitudes might reach critical levels. This paper demonstrates two different approaches to evaluate the unsteady flow during a surge cycle. The first uses a three dimensional, time accurate finite volume solver for viscid compressible flows to calculate the transient surge cycle of the compressor. The compressor itself is represented by a multi-blade-row sector model. The second approach makes use of the same solver and compressor domain to determine steady state characteristics of the HPC in forward, stalled and reversed flow. Based on these characteristics an one dimensional finite volume solver for inviscid compressible flows was developed to determine the transient compressor behavior. The one dimensional solver represents the compressor by source terms that are linked to the previously determined steady state characteristics. Copyright © 2014 by Rolls-Royce Deutschland Ltd & Co KG KW - Compressors KW - High pressure (Physics) KW - Numerical analysis Y1 - 2014 SN - 978-0-7918-4577-6 U6 - https://doi.org/10.1115/GT2014-26295 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Giersch, Thomas A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix T1 - Probabilistic Analysis of Low Engine Order Excitation Due to Geometric Perturbations of Upstream Nozzle Guide Vanes : ISABE-2015-20165 T2 - Conference Proceedings from the 22nd International Symposium on Air Breathing Engines, October 25-30, 2015, Phoenix, Arizona Y1 - 2015 UR - http://hdl.handle.net/2374.UC/745749 SP - 1 EP - 9 PB - ISABE ER - TY - CHAP A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Nipkau, Jens T1 - Effect of Mistuning and Damping on the Forced Response of a Compressor Blisk Rotor T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7A: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - The forced response of an E3E-type high pressure compressor blisk front rotor is analyzed with regard to intentional mistuning and its robustness towards additional random mistuning. Both a chosen alternating mistuning pattern and artificial mistuning patterns optimized concerning the forced response are considered. Focusing on three different blade modes, subset of nominal system mode-based reduced order models are employed to compute the forced response. The disk remains unchanged while the Young’s modulus of each blade is used to define the particular mistuning pattern. The well established aerodynamic influence coefficient technique is employed to model aeroelastic coupling and hence to consider the strongly mode- and inter blade phase angle-dependent aerodynamic damping contribution. It has been found that a reduction of the maximum forced response beyond that of the tuned reference can be achieved for particular mistuning patterns and all modes considered. This implies an exciting engine order which would cause a low nodal diameter mode in case of a tuned blisk. At best a nearly 50% reduction of maximum response magnitudes is computed for the fundamental bending mode and large mistuning. The solution proved to be robust towards additional random mistuning of reasonable magnitude, which is of particular interest with regard to a potential technical realization. In case of small mistuning as assumed for the first torsion and the longitudinal bending mode the advantage of achieving response magnitudes beyond the tuned reference gets lost indeed, if random mistuning is superimposed. However, mostly a lower response level is calculated compared to responses obtained from models adjusted to mistuning determined by experiment. Copyright © 2015 by ASME KW - Compressors KW - Damping KW - Rotors Y1 - 2015 SN - 978-0-7918-5677-2 U6 - https://doi.org/10.1115/GT2015-42036 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold T1 - Analysis of Mistuned Blade Vibrations Based on Normally Distributed Blade Individual Natural Frequencies T2 - ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 7B: Structures and Dynamics Montreal, Quebec, Canada, June 15–19, 2015 N2 - With increasing demands for reliability of modern turbomachinery blades the quantification of uncertainty and its impact on the designed product has become an important part of the development process. This paper aims to contribute to an improved approximation of expected vibration amplitudes of a mistuned rotor assembly under certain assumptions on the probability distribution of the blade’s natural frequencies. A previously widely used lumped mass model is employed to represent the vibrational behavior of a cyclic symmetric structure. Aerodynamic coupling of the blades is considered based on the concept of influence coefficients leading to individual damping of the traveling wave modes. The natural frequencies of individual rotor blades are assumed to be normal distributed and the required variance could be estimated due to experiences with the applied manufacturing process. Under these conditions it is possible to derive the probability distribution of the off-diagonal terms in the mistuned equations of motions, that are responsible for the coupling of different circumferential modes. Knowing these distributions recent limits on the maximum attainable mistuned vibration amplitude are improved. The improvement is achieved due to the fact, that the maximum amplification depends on the mistuning strength. This improved limit can be used in the development process, as it could partly replace probabilistic studies with surrogate models of reduced order. The obtained results are verified with numerical simulations of the underlying structural model with random mistuning patterns based on a normal distribution of individual blade frequencies. Copyright © 2015 by ASME KW - Vibration KW - Blades Y1 - 2015 SN - 978-0-7918-5677-2 U6 - https://doi.org/10.1115/GT2015-43121 PB - ASME CY - New York, NY ER - TY - GEN A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Analysis of mistuned forced response in an axial high-pressure compressor rig with focus on Tyler–Sofrin modes T2 - The Aeronautical Journal N2 - This paper aims at contributing to a better understanding of the effect of Tyler–Sofrin Modes (TSMs) on forced vibration responses by analysing a 4.5-stage research axial compressor rig. The first part starts with a brief review of the involved physical mechanisms and necessary prerequisites for the generation of TSMs in multistage engines. This review is supported by unsteady CFD simulations of a quasi 2D section of the studied engine. It is shown that the amplitude increasing effect due to mistuning can be further amplified by the presence of TSMs. Furthermore, the sensitivity with respect to the structural coupling of the blades and the damping as well as the shape of the expected envelope is analysed. The second part deals with the Rotor 2 blisk of the research compressor rig. The resonance of a higher blade mode with the engine order of the upstream stator is studied in two different flow conditions realised by different variable stator vane (VSV) schedules which allows to separate the influence of TSMs from the impact of mistuning. A subset of nominal system modes representation of the rotor is used to describe its mistuned vibration behaviour, and unsteady CFD simulations are used to characterise the present strength of the TSMs in the particular operating conditions. Measured maximum amplitude vs blade pattern and frequency response functions are compared against the predictions of the aeromechanical models in order to assess the strength of the TSMs as well as its influence on vibration levels. Y1 - 2019 U6 - https://doi.org/10.1017/aer.2018.163 SN - 2059-6464 IS - 123 SP - 356 EP - 377 ER - TY - GEN A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Hönisch, Peter A1 - Giersch, Thomas A1 - Schrape, Sven T1 - Model update and validation of a mistuned high-pressure compressor blisk T2 - The Aeronautical Journal N2 - In order to prepare an advanced 4-stage high-pressure compressor rig test campaign, details regarding both accomplishment and analysis of preliminary experiments are provided in this paper. The superior objective of the research project is to contribute to a reliable but simultaneously less conservative design of future high pressure blade integrated disks (blisk). It is planned to achieve trend-setting advances based on a close combination of both numerical and experimental analyses. The analyses are focused on the second rotor of this research compressor, which is the only one being manufactured as blisk. The comprehensive test program is addressing both surge and forced response analyses e.g. caused by low engine order excitation. Among others the interaction of aeroelastics and blade mistuning is demanding attention in this regard. That is why structural models are needed, allowing for an accurate forced response prediction close to reality. Furthermore, these models are required to support the assessment of blade tip timing (BTT) data gathered in the rig tests and strain gauge (s/g) data as well. To gain the maximum information regarding the correlation between BTT data, s/g-data and pressure gauge data, every blade of the second stage rotor (28 blades) is applied with s/g. However, it is well known that s/g on blades can contribute additional mistuning that had to be considered upon updating structural models. Due to the relevance of mistuning, efforts are made for its accurate experimental determination. Blade-by-blade impact tests according to a patented approach are used for this purpose. From the research point of view, it is most interesting to determine both the effect s/g-instrumentation and assembling the compressor stages on blade frequency mistuning. That is why experimental mistuning tests carried out immediately after manufacturing the blisk are repeated twice, namely, after s/g instrumentation and after assembling. To complete the pre-test program, the pure mechanical damping and modal damping ratios dependent on the ambient pressure are experimentally determined inside a pressure vessel. Subsequently the mistuning data gained before is used for updating subset of nominal system mode (SNM) models. Aerodynamic influence coefficients (AICs) are implemented to take aeroelastic interaction into account for forced response analyses. Within a comparison of different models, it is shown for the fundamental flap mode (1F) that the s/g instrumentation significantly affects the forced response, whereas the impact of assembling the compressor plays a minor role. KW - Blisk KW - Mistuning KW - Aerodynamic damping Y1 - 2019 U6 - https://doi.org/10.1017/aer.2018.149 SN - 2059-6464 SN - 0001-9240 VL - 123 IS - 1260 SP - 230 EP - 247 ER - TY - GEN A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Giersch, Thomas A1 - Schrape, Sven A1 - Nipkau, Jens T1 - An inverse approach to identify tuned aerodynamic damping, system frequencies and mistuning – Part 3: Application to engine data T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17–21, 2019, Phoenix, Arizona, USA N2 - A novel approach for the identification of tuned aerodynamic damping, system frequencies, forcing and mistuning has been introduced in the first part of this paper. It is based on the forced response equations of motion for a blade dominated mode family. A least squares formulation allows to identify the system’s parameters directly from measured frequency response functions (FRFs) of all blades recorded during a sweep through a resonance. The second part has dealt with its modification and application to experimental modal analyses of blisks at rest. This 3rd part aims at presenting the application of the approach to blade tip timing (BTT) data acquired in rig tests. Therefore, blisk rotors of two different engines are studied: a single stage fan rig and a 4.5 stage high pressure compressor (HPC) rig. The rig test campaign of the fan blisk included also an intentional mistuning experiment that allows to study the performance of the identification approach for a similar rotor with two different mistuning levels. It is demonstrated that the approach can identify aerodynamic damping curves, system frequencies, mistuning pattern and forced travelling wave modes (TWMs) from state of the art BTT data monitored during rig or engine tests. All derived mistuning patterns could be verified with reference measurements at standstill. The derived aerodynamic damping curves and system frequencies show a reasonable agreement with simulations. For the HPC case a multitude of excited TWMs could be identified which also lines up with previous simulations. KW - Damping KW - Engines KW - Blades KW - Engineering simulation KW - Rotors KW - Compressors KW - Modal analysis Y1 - 2019 UR - https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2019/58684/V07AT36A014/1067111 SN - 978-0-7918-5868-4 U6 - https://doi.org/10.1115/GT2019-91337 ER - TY - GEN A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Figaschewsky, Felix A1 - Bornholm, Alfons T1 - Vibration analysis of a mistuned axial turbine blisk T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, June 17–21, 2019, Phoenix, Arizona, USA N2 - An axial turbine blisk for turbocharger applications is analyzed with respect to the effect of intentional mistuning on the forced response. Originally, the intentional mistuning pattern has been designed by employing a genetic algorithm optimization in order to reduce the forced response caused by low engine order excitation (LEO) of the fundamental flap mode. The solution found has been implemented in a prototype of that blisk. For the purpose of comparison, a second reference blisk has been manufactured without intentional mistuning. The actual mistuning distributions of the blisks have been identified by employing blade-by-blade impact testing. Alternatively, a new inverse approach has been employed, which is based on a least squares formulation and benefits from less experimental effort. Based on the information gained by the aforementioned testing procedures, subset of nominal systems (SNM)-models have been updated, which allow for considering the aeroelastic coupling by means of aerodynamic influence coefficients (AIC). Despite of small but unavoidable deviations from the design intention it could be proved within numerical simulations that the intended 70 per cent reduction of the maximum forced response is nevertheless achieved. In addition, the paper is addressing the effect of the aforementioned intentional mistuning pattern on a higher mode, which is relevant for the durability as well. Hence, new SNM-models have to be updated in order to calculate the forced response due to EO-excitation caused by the nozzle guide vane. Although the original mistuning pattern has been optimized solely for reducing the forced response of the fundamental flap mode, it hardly affects the higher mode forced response in a negative manner. KW - Turbines KW - Vibration analysis KW - Blades KW - Excitation KW - Computer simulation KW - Design Y1 - 2019 UR - https://asmedigitalcollection.asme.org/GT/GT2019/volume/58691 SN - 978-0-7918-5869-1 U6 - https://doi.org/10.1115/GT2019-92047 ER - TY - GEN A1 - Figaschewsky, Felix A1 - Beirow, Bernd A1 - Kühhorn, Arnold A1 - Nipkau, Jens A1 - Giersch, Thomas A1 - Powers, Bronwyn T1 - Design and Analysis of an Intentional Mistuning Experiment Reducing Flutter Susceptibility and Minimizing Forced Response of a Jet Engine Fan T2 - ASME Turbo Expo 2017, GT2017-64621, June 26-30, 2017, Charlotte, NC, USA, Volume 7B N2 - Recent demands for a reduction of specific fuel consumption of jet engines have been opposed by increasing propulsive efficiency with higher bypass ratios and increased engine sizes. At the same time the challenge for the engine development is to design safe and efficient fan blades of high aspect ratios. Since the fan is the very first rotor stage, it experiences significant distortions in the incoming flow depending on the operating conditions. Flow distortions do not only lead to a performance and stall margin loss but also to remarkable low engine order (LEO) excitation responsible for forced vibrations of fundamental modes. Additionally, fans of jet engines typically suffer from stall flutter, which can be additionally amplified by reflections of acoustic pressure waves at the intake. Stall flutter appears before approaching the stall line on the fan’s characteristic and limits its stable operating range. Despite the fact that this “flutter bite” usually affects only a very narrow speed range, it reduces the overall margin of safe operation significantly. With increasing aspect ratios of ultra-high bypass ratio jet engines the flutter susceptibility will probably increase further and emphasizes the importance of considering aeromechanical analyses early in the design phase of future fans. This paper aims at proving that intentional mistuning is able to remove the flutter bite of modern jet engine fans without raising issues due to heavily increased forced vibrations induced by LEO excitation. Whereas intentional mistuning is an established technology in mitigating flutter, it is also known to amplify the forced response. However, recent investigations considering aeroelastic coupling revealed that under specific circumstances mistuning can also reduce the forced response due to engine order excitation. In order to allow a direct comparison and to limit costs as well as effort at the same time, the intentional mistuning is introduced in a non-destructive way by applying heavy paint to the blades. Its impact on the blade’s natural frequencies is estimated via finite element models with an additional paint layer. In parallel, this procedure is experimentally verified with painted fan blades in the laboratory. A validated SNM (subset of nominal system modes) representation of the fan is used as a computational model to characterize its mistuned vibration behavior. Its validation is done by comparing mistuned mode shape envelopes and frequencies of an experimental modal analysis at rest with those obtained by the updated computational model. In order to find a mistuning pattern minimizing the forced response of mode 1 and 2 at the same time and satisfying stability and imbalance constraints, a multi-objective optimization has been carried out. Finally, the beneficial properties of the optimized mistuning pattern are verified in a rig test of the painted rotor. Copyright © 2017 by Rolls-Royce Deutschland Ltd & Co KG KW - Flutter (Aerodynamics) KW - Desin KW - Jet engines Y1 - 2017 SN - 978-0-7918-5093-0 U6 - https://doi.org/10.1115/GT2017-64621 PB - ASME CY - New York, NY ER - TY - GEN A1 - Beirow, Bernd A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Bornholm, Alfons T1 - Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning T2 - ASME Turbo Expo 2017, GT2017-63193, June 26-30, 2017, Charlotte, NC, USA, Volume 7B N2 - The potential of intentional mistuning to reduce the maximum forced response is analyzed within the development of an axial turbine blisk for ship diesel engine turbocharger applications. The basic idea of the approach is to provide an increased aerodynamic damping level for particular engine order excitations and mode shapes without any significant distortions of the aerodynamic performance. The mistuning pattern intended to yield a mitigation of the forced response is derived from an optimization study applying genetic algorithms. Two blisk prototypes have been manufactured a first one with and another one without employing intentional mistuning. Hence, the differences regarding the real mistuning and other modal properties can be experimentally determined and evaluated as well. In addition, the experimental data basis allows for updating structural models which are well suited to compute the forced response under operational conditions. In this way, the real benefit achieved with the application of intentional mistuning is demonstrated. Copyright © 2017 by ASME KW - Turbines KW - Modal Analysis Y1 - 2017 SN - 978-0-7918-5093-0 U6 - https://doi.org/10.1115/GT2017-63193 PB - ASME CY - New York, NY ER - TY - GEN A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Beirow, Bernd A1 - Giersch, Thomas A1 - Nipkau, Jens A1 - Meinl, Ferdinand T1 - Simplified Estimation of Aerodynamic Damping for Bladed Rotors, Part 2: Experimental Validation During operation T2 - ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13–17, 2016 N2 - Due to increasing requirements of future engine projects, much effort has been spent on the design of more efficient turbomachinery blades in the recent years. Besides aerodynamic efficiency constraints, these designs need to meet structural criteria ensuring that they are safe and robust with respect to High Cycle Fatigue (HCF). The estimation of the resonant vibration amplitude is done based on the aerodynamic force and the overall damping level. Since, for many applications the contribution of mechanical damping is often rather low compared to the aerodynamic counterpart, the determination of the aerodynamic damping is vital for the estimation of the forced vibration response. This second part is meant to contribute to a simplified computation of the aerodynamic damping during operation by making additional assumptions: The investigated mode family shall not suffer from flutter, has a high reduced frequency and the influence of adjacent blades is negligible. Under these circumstances a simplified approach can be introduced that allows for the computation of the mean value of the aerodynamic damping based on a steady state CFD solution of the regarded stage. It is well known, that the aerodynamic damping of a blade mode family depends on the inter blade phase angle (IBPA) and its direction of propagation, which is not covered by the simplified approach. For higher modes the difference between the minimum and maximum damping is often low and the mean value is a good approximation, whereas for fundamental modes there is often a significant difference. However, it is shown that considering a mistuned vibration response of the rotor, the expected value of the mistuned damping exhibits the mean value of IBPA-dependent aerodynamic damping. CFD simulations of an oscillating airfoil indicate a certain validity range of the simplified approach based on a modified reduced frequency and inlet Mach number, which allows to determine for which industrial applications the approach is most suitable. Finally, this range of validity is verified with experimentally determined overall damping values from strain gauge measurements during operation for 2 different industrial applications, an axial compressor stage of a jet engine and a radial turbine stage of a turbocharger. Copyright © 2016 by Rolls-Royce Deutschland Ltd & Co KG Y1 - 2016 SN - 978-0-7918-4984-2 U6 - https://doi.org/10.1115/GT2016-56458 N1 - Paper No. GT2016-56458 PB - ASME CY - New York, NY [u.a.] ER - TY - GEN A1 - Beirow, Bernd A1 - Maywald, Thomas A1 - Figaschewsky, Felix A1 - Kühhorn, Arnold A1 - Heinrich, Christoph Rocky A1 - Giersch, Thomas T1 - Simplified Determination of Aerodynamic Damping for Bladed Rotors, Part 1: Experimental Validation at Rest T2 - ASME Turbo Expo 2016, Turbomachinery Technical Conference and Exposition, Volume 7B, Structures and Dynamics, Seoul, South Korea, June 13–17, 2016 N2 - Considering both a radial turbine rotor of a turbocharger and an axial compressor test blisk at rest, aerodynamic damping characteristics are experimentally and numerically analyzed. Linear dependencies of modal damping ratios on the ambient pressure or the acoustic impedance, respectively, could be shown within experiments carried out inside a pressure chamber. The impact of the ambient air clearly dominates the modal damping ratios compared to the minor contribution of the structure. Assuming that acoustic emission can be regarded as main source of aerodynamic damping a simplified approach for its determination is introduced which only depends on natural frequency, mode shape and acoustic impedance. It is shown that a satisfying match between experiment and computation is achieved for those cases which are dedicated to sufficiently small ratios between wave lengths of acoustic emissions and blade distances. Y1 - 2016 SN - 978-0-7918-4984-2 U6 - https://doi.org/10.1115/GT2016-56535 N1 - Paper No. GT2016-56535 PB - ASME CY - New York, NY ER -