TY - GEN A1 - Morozova, Iuliia A1 - Obrosov, Aleksei A1 - Naumov, Anton A1 - Królicka, Aleksandra A1 - Golubev, Iurii A1 - Bokov, Dmitry O. A1 - Doynov, Nikolay A1 - Weiß, Sabine A1 - Michailov, Vesselin T1 - Impact of Impulses on Microstructural Evolution and Mechanical Performance of Al-Mg-Si Alloy Joined by Impulse Friction Stir Welding T2 - Materials N2 - Impulse Friction Stir Welding (IFSW) was utilized to join 6082–T6 alloy plates at various impulse frequencies. A distinctive feature of IFSW is the generation of mechanical impulses that enhances the forging action of the tool, and thereby, alters the weld microstructure. The microstructural evolution in the Stir Zone (SZ) with special focus on the strengthening precipitation behavior, and overall mechanical properties of the IFSW joints have been investigated. It was demonstrated that the strengthening β″ precipitates reprecipitated in the SZ of the IFSW joints during natural aging. In contrast, no precipitates were found in the SZ of the Friction Stir Welding (FSW) weld. Partial reversion of β″ after IFSW is supposed to occur due to more developed subgrain network and higher dislocation density introduced by impulses that accelerated precipitation kinetics. Dynamic recrystallisation was facilitated by impulses resulting in a fine, homogeneous structure. There was no significant difference between the microhardness in the SZ, tensile and yield strength of the FSW and IFSW joints. However, the application of impulses demonstrated the smoothing of the hardness reduction in the transition region at the advancing side. The shift of the fracture location from the Heat-Affected Zone (HAZ) by FSW to the SZ as well as higher elongation of the joints by IFSW of lower frequencies could be related to the grain refinement and the change of the grain orientation. KW - Al-Mg-Si alloy KW - impulse friction stir welding (IFSW) KW - precipitation KW - microstructure evolution KW - mechanical properties Y1 - 2021 UR - https://www.mdpi.com/1996-1944/14/2/347/htm U6 - https://doi.org/https://doi.org/10.3390/ma14020347 SN - 1996-1944 VL - 14 IS - 2 ER - TY - GEN A1 - Fellah, Mamoun A1 - Hezil, Naouel A1 - Touhami, Mohamed Zine A1 - Samad, Mohammed Abdul A1 - Obrosov, Aleksei A1 - Bokov, Dmitry O. A1 - Marchenko, Ekaterina A1 - Montagne, Alex A1 - Iost, Alain A1 - Alhussein, Akram T1 - Structural, tribological and antibacterial properties of (α + β) based ti-alloys for biomedical applications T2 - Journal of Materials Research and Technology N2 - Implant-related follow up complications resulting from poor implant integration, delamination, chipping, mechanical instability, inflammation or graft-vs-host reaction may lead to low patient tolerance, prolonged care and sometimes leading to a second surgery. Hence, there is an urgent need for developing biomaterials which will help to overcome the above compatibility problems. Ti based alloys have been widely used for biomedical applications, due to their excellent properties, such as low modulus, high biocompatibility and high corrosion resistance. In order to further improve the physical, mechanical and tribological properties of these alloys, microstructural modification is often required. Hence, this study aims to develop and evaluate the structural and tribological behavior of Hot Isostatic Pressed (HIPed) and sintered Ti-6Al-7Nb samples containing niobium, which is less toxic and less expensive as compared to the usual alloying element, vanadium (Ti-6Al-4 V). The Ti-6Al-7Nb alloys were fabricated by using nanoparticle powders milled for different durations (2, 6, 12 and 18 h) to evaluate the effect of milling time on the morphological and structural properties. Friction and wear tests were carried out on the (HIPed) and finally sintered Ti-6Al-7Nb alloy samples, to evaluate their tribological properties under different applied loads (2, 8 and 16 N), with an alumina α-Al2O3 ball as a counter face using an oscillating tribometer. The physical characterization of the nanopowders formed using different milling times indicated that the particle and crystallite size continually decreased with increasing milling time, while the microstrain increased. It is observed that the friction coefficient and wear rate for the samples prepared by powders milled for 18 h and tested under 2 N were lowest with values of 0.25 and 1.51 × 10−2 μm3∙N-1 μm-1, respectively compared to other milled samples. This improvement in tribological properties is attributed to the grain refinement at high milling times. The antibacterial evaluation of the fabricated alloys showed an improvement in antibacterial performance of the samples milled at 18 h compared to the other milling times. KW - Mechanical properties KW - Hot Isostatic Pressure KW - Ti-6Al-7Nb KW - Powder metallurgy KW - Milling time KW - Physical characterization KW - biomaterials KW - microstructure Y1 - 2020 UR - https://www.sciencedirect.com/science/article/pii/S2238785420318421 U6 - https://doi.org/10.1016/j.jmrt.2020.09.118 SN - 2238-7854 VL - 9 IS - 6 SP - 14061 EP - 14074 ER - TY - GEN A1 - Biedunkiewicz, Anna A1 - Figiel, Paweł A1 - Garbiec, Dariusz A1 - Obrosov, Aleksei A1 - Pawlyta, Mirosława A1 - Biedunkiewicz, Witold A1 - Pruss, Przemysław A1 - Rokosz, Krzysztof A1 - Wróbel, Rafał A1 - Raaen, Steinar A1 - Weiß, Sabine A1 - Bokov, Dmitry O. T1 - Influence of Elemental Carbon (EC) Coating Covering nc-(Ti,Mo)C Particles on the Microstructure and Properties of Titanium Matrix Composites Prepared by Reactive Spark Plasma Sintering T2 - Materials N2 - This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young’s modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. KW - nanocomposites KW - TiMMCs KW - spark plasma sintering KW - (Ti,Mo)C/C KW - EBSD KW - fracture toughness Y1 - 2021 UR - https://www.mdpi.com/1996-1944/14/1/231 U6 - https://doi.org/https://doi.org/10.3390/ma14010231 SN - 1996-1944 VL - 14 IS - 1 ER -