TY - GEN A1 - Franken, Tim A1 - Sommerhoff, Arnd A1 - Willems, Werner A1 - Matrisciano, Andrea A1 - Lehtiniemi, Harry A1 - Borg, Anders A1 - Netzer, Corinna A1 - Mauß, Fabian T1 - Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model T2 - SAE technical paper KW - Advanced Predictive Y1 - 2017 UR - http://papers.sae.org/2017-01-0516 U6 - https://doi.org/10.4271/2017-01-0516 SN - 0148-7191 SN - 0096-5170 N1 - WCX™ 17: SAE World Congress Experience ER - TY - CHAP A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Lehtiniemi, Harry A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Efficient tracking of knock onset for a wide range of fuel surrogates T2 - International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress KW - Efficient tracking of knock Y1 - 2017 UR - https://www.researchgate.net/publication/319137036 ER - TY - CHAP A1 - Seidel, Lars A1 - Netzer, Corinna A1 - Hilbig, Martin A1 - Mauß, Fabian A1 - Klauer, Christian A1 - Pasternak, Michal A1 - Matrisciano, Andrea T1 - Systematic Reduction of Detailed Chemical Reaction Mechanisms for Engine Applications T2 - ASME 2016 Internal Combustion Engine Division Fall Technical Conference Greenville, South Carolina, USA, October 9–12, 2016 N2 - In this work we apply a sequence of concepts for mechanism reduction on one reaction mechanism including novel quality control. We introduce a moment based accuracy rating method for species profiles. The concept is used for a necessity based mechanism reduction utilizing 0D reactors. Thereafter a stochastic reactor model (SRM) for internal combustion engines is applied to control the quality of the reduced reaction mechanism during the expansion phase of the engine. This phase is sensitive on engine out emissions, and is often not considered in mechanism reduction work. The proposed process allows to compile highly reduced reaction schemes for CFD application for internal combustion engine simulations. It is demonstrated that the resulting reduced mechanisms predict combustion and emission formation in engines with accuracies comparable to the original detailed scheme. KW - Systematic Reduction KW - Chemical Reaction Mechanismus for Engine Applications Y1 - 2016 SN - 978-0-7918-5050-3 N1 - Paper No. ICEF2016-9304 PB - The American Society of Mechanical Engineers CY - New York, N.Y. ER - TY - CHAP A1 - Matrisciano, Andrea A1 - Borg, Anders A1 - Perlman, Cathleen A1 - Pasternak, Michal A1 - Seidel, Lars A1 - Netzer, Corinna A1 - Mauß, Fabian A1 - Lehtiniemi, Harry T1 - Simulation of DI-Diesel combustion using tabulated chemistry approach T2 - 1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden KW - Simulation of DI-Diesel Y1 - 2016 UR - http://ecco-mate.eu/images/Training%20events/LUND/ECCO-MATE_C1_Proceedings.pdf SP - 44 EP - 47 ER - TY - CHAP A1 - Seidel, Lars A1 - Klauer, Christian A1 - Pasternak, Michal A1 - Matrisciano, Andrea A1 - Netzer, Corinna A1 - Hilbig, Martin A1 - Mauß, Fabian T1 - Systematic Mechanism Reduction for Engine Applications T2 - 5th International Workshop on Model Reduction in Reacting Flows, Lübbenau, 2015 N2 - In this work we apply various concepts of mechanism reduction with a PDF based method for species profile conservation. The reduction process is kept time efficient by only using 0D and 1D reactors. To account for the expansion phase in internal combustion engines a stochastic engine tool is used to validate the reduction steps. KW - Combustion, Mechanism Reduction Y1 - 2015 UR - www.modelreduction.net UR - http://modelreduction.net/wp-content/uploads/2015/07/5th_IWMRRF_2015.pdf ER - TY - GEN A1 - Matrisciano, Andrea A1 - Netzer, Corinna A1 - Werner, Adina A1 - Borg, Anders A1 - Seidel, Lars A1 - Mauß, Fabian T1 - A Computationally Efficient Progress Variable Approach for In-Cylinder Combustion and Emissions Simulations T2 - SAE Technical Paper N2 - The use of complex reaction schemes is accompanied by high computational cost in 3D CFD simulations but is particularly important to predict pollutant emissions in internal combustion engine simulations. One solution to tackle this problem is to solve the chemistry prior the CFD run and store the chemistry information in look-up tables. The approach presented combines pre-tabulated progress variable-based source terms for auto-ignition as well as soot and NOx source terms for emission predictions. The method is coupled to the 3D CFD code CONVERGE v2.4 via user-coding and tested over various speed and load passenger-car Diesel engine conditions. This work includes the comparison between the combustion progress variable (CPV) model and the online chemistry solver in CONVERGE 2.4. Both models are compared by means of combustion and emission parameters. A detailed n-decane/α-methyl-naphthalene mechanism, comprising 189 species, is used for both online and tabulated chemistry simulations. The two chemistry solvers show very good agreement between each other and equally predict trends derived experimentally by means of engine performance parameters as well as soot and NOx engine-out emissions. The CPV model shows a factor 8 speed-up in run-time compared to the online chemistry solver without compromising the accuracy of the solution. Y1 - 2019 U6 - https://doi.org/10.4271/2019-24-0011 SN - 0148-7191 SN - 2688-3627 ER -