TY - CHAP A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco ED - Bianconi, Antonio ED - Saini, Naurang L. T1 - Domain wall structures in the two-dimensional Hubbard modelwith long-range Coulomb interaction T2 - Stripes and Related Phenomena Y1 - 2000 SN - 0-306-46419-5 U6 - https://doi.org/10.1007/0-306-47100-0_18 SP - 151 EP - 157 PB - Kluwer Academic Plenum CY - New York ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Striped phases in the two-dimensional Hubbard model with long-rangeCoulomb interaction Y1 - 1998 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco ED - Barnes, Stewart E. T1 - Role of the long-range Coulomb interaction on the formation of striped phases in the two-dimensional Hubbard model T2 - High temperature superconductivity, Coral Gables, Florida, January 1999 Y1 - 1999 SN - 1-56396-880-0 U6 - https://doi.org/10.1063/1.59651 PB - AIP Publishing CY - Melville, New York ER - TY - GEN A1 - Cea, Tommaso A1 - Bucheli, Daniel A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Lorenzana, José A1 - Castellani, Claudio T1 - Optical excitation of phase modes in strongly disordered superconductors T2 - Physical Review B N2 - According to the Goldstone theorem the breaking of a continuous U(1) symmetry comes along with the existence of low-energy collective modes. In the context of superconductivity these excitations are related to the phase of the superconducting (SC) order parameter and for clean systems are optically inactive; that is, single-mode excitations do not directly couple to light. Here we show that for strongly disordered superconductors phase modes acquire a dipole moment and appear as a subgap spectral feature in the optical conductivity. This finding is obtained with both a gauge-invariant random-phase approximation scheme based on a fermionic Bogoliubov–de Gennes state and a prototypical bosonic model for disordered superconductors. In the strongly disordered regime, where the system displays an effective granularity of the SC properties, the optically active dipoles are linked to the isolated SC islands, offering a new perspective for realizing microwave optical devices. Y1 - 2014 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.174506 U6 - https://doi.org/10.1103/PhysRevB.89.174506 SN - 2469-9969 VL - 89 SP - 174506 ER - TY - GEN A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Castellani, Claudio A1 - Lorenzana, José T1 - Amplitude, density, and current correlations of strongly disordered superconductors T2 - Physical Review B N2 - We investigate the disorder dependence of the static density, amplitude, and current correlations within the attractive Hubbard model supplemented with onsite disorder. It is found that strong disorder favors a decoupling of density and amplitude correlations due to the formation of superconducting (SC) islands. This emergent granularity also induces an enhancement of the density correlations on the SC islands whereas amplitude fluctuations are most pronounced in the “insulating” regions. While density and amplitude correlations are short ranged at strong disorder, we show that current correlations have a long-range tail due to the formation of percolative current paths in agreement with the constant behavior expected from the analysis of one-dimensional models. Y1 - 2015 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.064512 U6 - https://doi.org/10.1103/PhysRevB.92.064512 SN - 2469-9969 VL - 92 IS - 6 SP - 064512 ER - TY - GEN A1 - Seibold, Götz A1 - Benfatto, Lara A1 - Castellani, Claudio A1 - Lorenzana, José T1 - Superfluid Density and Phase Relaxation in Superconductors with Strong Disorder T2 - Physical Review Letters N2 - We consider the attractive Hubbard model with on-site disorder as a prototype of a disordered superconductor. We solve the Bogoliubov–de Gennes equations on two-dimensional finite clusters at zero temperature and evaluate the electromagnetic response to a vector potential. We find that the standard decoupling between transverse and longitudinal response does not apply in the presence of disorder. Moreover, the superfluid density is strongly reduced by the relaxation of the phase of the order parameter already at mean-field level when disorder is large. We also find that the anharmonicity of the phase fluctuations is strongly enhanced by disorder. Beyond mean field, this provides an enhancement of quantum fluctuations inducing a zero-temperature transition to a nonsuperconducting phase of disordered preformed pairs. Finally, the connection of our findings with the glassy physics for extreme dirty superconductors is discussed. Y1 - 2012 UR - http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.207004 U6 - https://doi.org/10.1103/PhysRevLett.108.207004 SN - 1092-0145 VL - 108 IS - 20 SP - 207004 ER - TY - GEN A1 - Udina, Mattia A1 - Fioro, Jacopo A1 - Cea, Tommaso A1 - Castellani, Claudio A1 - Seibold, Götz A1 - Benfatto, Lara T1 - THz non-linear optical response in cuprates: predominance of the BCS response over the Higgs mode T2 - Faraday Discussions N2 - Recent experiments with strong THz fields in unconventional cuprate superconductors have clearly evidenced an increase of the non-linear optical response below the superconducting critical temperature Tc. As in the case of conventional superconductors, a theoretical estimate of the various effects contributing to the non-linear response is needed in order to interpret the experimental findings. Here, we report a detailed quantitative analysis of the non-linear THz optical kernel in cuprates within a realistic model, accounting for the band structure and disorder level appropriate for these systems. We show that the BCS quasiparticle response is the dominant contribution for cuprates, and its polarization dependence accounts very well for the third-harmonic generation measurements. On the other hand, the polarization dependence of the THz Kerr effect is only partly captured by our calculations, suggesting the presence of additional effects when the system is probed using light pulses with different central frequencies. Y1 - 2022 UR - https://pubs.rsc.org/en/content/articlelanding/2022/FD/D2FD00016D U6 - https://doi.org/10.1039/D2FD00016D SN - 1364-5498 VL - 237 SP - 168 EP - 185 ER -