TY - GEN A1 - Baroni, Andrea A1 - Glukhov, Artem A1 - Pérez, Eduardo A1 - Wenger, Christian A1 - Calore, Enrico A1 - Schifano, Sebastiano Fabio A1 - Olivo, Piero A1 - Ielmini, Daniele A1 - Zambelli, Cristian T1 - An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories T2 - Frontiers in Neuroscience N2 - One of the objectives fostered in medical science is the so-called precision medicine, which requires the analysis of a large amount of survival data from patients to deeply understand treatment options. Tools like Machine Learning and Deep Neural Networks are becoming a de-facto standard. Nowadays, computing facilities based on the Von Neumann architecture are devoted to these tasks, yet rapidly hitting a bottleneck in performance and energy efficiency. The In-Memory Computing (IMC) architecture emerged as a revolutionary approach to overcome that issue. In this work, we propose an IMC architecture based on Resistive switching memory (RRAM) crossbar arrays to provide a convenient primitive for matrix–vector multiplication in a single computational step. This opens massive performance improvement in the acceleration of a neural network that is frequently used in survival analysis of biomedical records, namely the DeepSurv. We explored how the synaptic weights mapping strategy and the programming algorithms developed to counter RRAM non-idealities expose a performance/energy trade-off. Finally, we assessed the benefits of the proposed architectures with respect to a GPU-based realization of the same task, evidencing a tenfold improvement in terms of performance and three orders of magnitude with respect to energy efficiency. KW - RRAM KW - In-Memory Computing KW - Multilevel switching Y1 - 2022 U6 - https://doi.org/10.3389/fnins.2022.932270 SN - 1662-4548 VL - Vol. 16 SP - 1 EP - 16 ER - TY - GEN A1 - Bogun, Nicolas A1 - Perez-Bosch Quesada, Emilio A1 - Pérez, Eduardo A1 - Wenger, Christian A1 - Kloes, Alexander A1 - Schwarz, Mike T1 - Analytical Calculation of Inference in Memristor-based Stochastic Artificial Neural Networks T2 - 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland N2 - The impact of artificial intelligence on human life has increased significantly in recent years. However, as the complexity of problems rose aswell, increasing system features for such amount of data computation became troublesome due to the von Neumann’s computer architecture. Neuromorphic computing aims to solve this problem by mimicking the parallel computation of a human brain. For this approach, memristive devices are used to emulate the synapses of a human brain. Yet, common simulations of hardware based networks require time consuming Monte-Carlo simulations to take into account the stochastic switching of memristive devices. This work presents an alternative concept making use of the convolution of the probability distribution functions (PDF) of memristor currents by its equivalent multiplication in Fourier domain. An artificial neural network is accordingly implemented to perform the inference stage with handwritten digits. KW - RRAM KW - neural network Y1 - 2022 SN - 978-83-63578-22-0 SN - 978-83-63578-21-3 SN - 978-1-6654-6176-4 U6 - https://doi.org/10.23919/MIXDES55591.2022.9838321 SP - 83 EP - 88 ER - TY - GEN A1 - Lukosius, Mindaugas A1 - Lukose, Rasuolė A1 - Lisker, Marco A1 - Luongo, G. A1 - Elviretti, M. A1 - Mai, Andreas A1 - Wenger, Christian T1 - Graphene Research in 200 mm CMOS Pilot Line T2 - 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022 N2 - Due to the unique electronic structures, graphene and other 2D Materials are considered as materials which can enable and extend the functionalities and performance in a large variety of applications, among them in microelectronics. At this point, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance.Towards these goals, this paper focuses on the full spectra of graphene research aspects in 200mm pilot line. We investigated different process module developments such as CMOS compatible growth of high quality graphene on germanium and its growth mechanisms, transfer related challenges on target substrates, patterning, passivation and various concepts of contacting of graphene on a full 200 mm wafers. Finally, we fabricated proof-of-concept test structures e.g. TLM, Hall bars and capacitor structures to prove the feasibility of graphene processing in the pilot line of IHP. KW - Graphene KW - CMOS Y1 - 2022 SN - 978-953-233-103-5 SN - 978-953-233-102-8 SN - 978-1-6654-8434-3 U6 - https://doi.org/10.23919/MIPRO55190.2022.9803362 SN - 2623-8764 SN - 1847-3938 SP - 113 EP - 117 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Richter, Karola A1 - Knaut, Martin A1 - Reif, Johanna A1 - Völkel, Sandra A1 - Jahn, Andreas A1 - Albert, Matthias A1 - Wenger, Christian A1 - Kirchner, Robert A1 - Bartha, Johann Wolfgang A1 - Mikolajick, Thomas T1 - Novel Graphene Adjustable-Barrier Transistor with Ultra-High Current Gain T2 - ACS Applied Materials & Interfaces N2 - A graphene-based three terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal−insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon−graphene−germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on−off ratio above 106, a swing of 87 mV/dec, and a drivecurrent of about 1 × 106 A/cm2. KW - Graphene KW - Transistor Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c10634 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 34 SP - 39249 EP - 39254 ER - TY - GEN A1 - Baroni, Andrea A1 - Glukhov, Artem A1 - Pérez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele A1 - Olivo, Piero A1 - Zambelli, Cristian T1 - Low Conductance State Drift Characterization and Mitigation in Resistive Switching Memories (RRAM) for Artificial Neural Networks T2 - IEEE Transactions on Device and Materials Reliability N2 - The crossbar structure of Resistive-switching random access memory (RRAM) arrays enabled the In-Memory Computing circuits paradigm, since they imply the native acceleration of a crucial operations in this scenario, namely the Matrix-Vector-Multiplication (MVM). However, RRAM arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation. A critical one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are mandatory for an accurate multi-level conductance operation. In this work, we analyze the benefits of a new programming algorithm that embodies Set and Reset switching operations to achieve better conductance control and lower variability. Data retention analysis performed with different temperatures for 168 hours evidence its superior performance with respect to standard programming approach. Finally, we explored the benefits of using our methodology at a higher abstraction level, through the simulation of an Artificial Neural Network for image recognition task (MNIST dataset). The accuracy achieved shows higher performance stability over temperature and time. KW - RRAM KW - neural network KW - Multilevel switching Y1 - 2022 U6 - https://doi.org/10.1109/TDMR.2022.3182133 SN - 1530-4388 VL - 22 IS - 3 SP - 340 EP - 347 ER - TY - GEN A1 - Prüfer, Mareike A1 - Wenger, Christian A1 - Bier, Frank F. A1 - Laux, Eva-Maria A1 - Hölzel, Ralph T1 - Activity of AC electrokinetically immobilized horseradish peroxidase T2 - Electrophoresis N2 - Dielectrophoresis(DEP) is an AC electrokinetic effect mainly used to manipulate cells.Smaller particles,like virions,antibodies,enzymes,andevendyemolecules can be immobilized by DEP as well. In principle, it was shown that enzymesare active after immobilization by DEP, but no quantification of the retainedactivity was reported so far. In this study, the activity of the enzyme horseradishperoxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resoruf in by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodesis accomplished by staining with the fluorescent product of the enzyme reac-tion.The high residual activity of enzymes after AC field induced immobilization shows the method’s suitability for biosensing and research applications. KW - dielectrophoresis KW - immobilization KW - nanoelectrodes Y1 - 2022 U6 - https://doi.org/10.1002/elps.202200073 SN - 1522-2683 VL - 43 IS - 18-19 SP - 1920 EP - 1933 ER - TY - GEN A1 - Franck, Max A1 - Dabrowski, Jaroslaw A1 - Schubert, Markus Andreas A1 - Wenger, Christian A1 - Lukosius, Mindaugas T1 - Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition T2 - Nanomaterials N2 - The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth KW - Boron nitride KW - 2d materials KW - Chemical vapour deposition Y1 - 2022 U6 - https://doi.org/10.3390/nano12193260 SN - 2079-4991 VL - 12 IS - 19 ER - TY - GEN A1 - Glukhov, Artem A1 - Lepri, Nicola A1 - Milo, Valerio A1 - Baroni, Andrea A1 - Zambelli, Cristian A1 - Olivo, Piero A1 - Pérez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - End-to-end modeling of variability-aware neural networks based on resistive-switching memory arrays T2 - Proc. 30th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC 2022) N2 - Resistive-switching random access memory (RRAM) is a promising technology that enables advanced applications in the field of in-memory computing (IMC). By operating the memory array in the analogue domain, RRAM-based IMC architectures can dramatically improve the energy efficiency of deep neural networks (DNNs). However, achieving a high inference accuracy is challenged by significant variation of RRAM conductance levels, which can be compensated by (i) advanced programming techniques and (ii) variability-aware training (VAT) algorithms. In both cases, however, detailed knowledge and accurate physics-based statistical models of RRAM are needed to develop programming and VAT methodologies. This work presents an end-to-end approach to the development of highly-accurate IMC circuits with RRAM, encompassing the device modeling, the precise programming algorithm, and the VAT simulations to maximize the DNN classification accuracy in presence of conductance variations. KW - RRAM KW - HfO2 KW - neural network KW - memristive switching Y1 - 2022 U6 - https://doi.org/10.1109/VLSI-SoC54400.2022.9939653 SP - 1 EP - 5 ER - TY - GEN A1 - Wen, Jianan A1 - Baroni, Andrea A1 - Pérez, Eduardo A1 - Ulbricht, Markus A1 - Wenger, Christian A1 - Krstic, Milos T1 - Evaluating Read Disturb Effect on RRAM based AI Accelerator with Multilevel States and Input Voltages T2 - 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) N2 - RRAM technology is a promising candidate for implementing efficient AI accelerators with extensive multiply-accumulate operations. By scaling RRAM devices to the synaptic crossbar array, the computations can be realized in situ, avoiding frequent weights transfer between the processing units and memory. Besides, as the computations are conducted in the analog domain with high flexibility, applying multilevel input voltages to the RRAM devices with multilevel conductance states enhances the computational efficiency further. However, several non-idealities existing in emerging RRAM technology may degrade the reliability of the system. In this paper, we measured and investigated the impact of read disturb on RRAM devices with different input voltages, which incurs conductance drifts and introduces errors. The measured data are deployed to simulate the RRAM based AI inference engines with multilevel states. KW - RRAM KW - Multilevel switching KW - AI accelarator Y1 - 2022 SN - 978-1-6654-5938-9 SN - 978-1-6654-5937-2 U6 - https://doi.org/10.1109/DFT56152.2022.9962345 SN - 2765-933X SP - 1 EP - 6 ER - TY - GEN A1 - Pérez, Eduardo A1 - Maldonado, David A1 - Perez-Bosch Quesada, Emilio A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Jimenez-Molinos, Francisco A1 - Wenger, Christian T1 - Parameter Extraction Methods for Assessing Device-to-Device and Cycle-to-Cycle Variability of Memristive Devices at Wafer Scale T2 - IEEE Transactions on Electron Devices N2 - The stochastic nature of the resistive switching (RS) process in memristive devices makes device-to-device (DTD) and cycle-to-cycle (CTC) variabilities relevant magnitudes to be quantified and modeled. To accomplish this aim, robust and reliable parameter extraction methods must be employed. In this work, four different extraction methods were used at the production level (over all the 108 devices integrated on 200-mm wafers manufactured in the IHP 130-nm CMOS technology) in order to obtain the corresponding collection of forming, reset, and set switching voltages. The statistical analysis of the experimental data (mean and standard deviation (SD) values) was plotted by using heat maps, which provide a good summary of the whole data at a glance and, in addition, an easy manner to detect inhomogeneities in the fabrication process. KW - RRAM KW - memristive device KW - cycle-to-cycle variability KW - device-to-device variability Y1 - 2023 U6 - https://doi.org/10.1109/TED.2022.3224886 SN - 0018-9383 VL - 70 IS - 1 SP - 360 EP - 365 ER -