TY - GEN A1 - Petzold, Stefan A1 - Piros, Eszter A1 - Eilhardt, Robert A1 - Zintler, Alexander A1 - Vogel, Tobias A1 - Kaiser, Nico A1 - Radetinac, Aldin A1 - Komissinskiy, Philipp A1 - Jalaguier, Eric A1 - Nolot, Emmanuel A1 - Charpin-Nicolle, Christelle A1 - Wenger, Christian A1 - Molina-Luna, Leopoldo A1 - Miranda, Enrique A1 - Alff, Lambert T1 - Tailoring the Switching Dynamics in Yttrium Oxide-Based RRAM Devices by Oxygen Engineering: From Digital to Multi-Level Quantization toward Analog Switching T2 - Advanced Electronic Materials N2 - This work investigates the transition from digital to gradual or analog resistive switching in yttrium oxide‐based resistive random‐access memory devices. It is shown that this transition is determined by the amount of oxygen in the functional layer. A homogeneous reduction of the oxygen content not only reduces the electroforming voltage, allowing for forming‐free devices, but also decreases the voltage operation window of switching, thereby reducing intra‐device variability. The most important effect as the dielectric becomes substoichiometric by oxygen engineering is that more intermediate (quantized) conduction states are accessible. A key factor for this reproducibly controllable behavior is the reduced local heat dissipation in the filament region due to the increased thermal conductivity of the oxygen depleted layer. The improved accessibility of quantized resistance states results in a semi‐gradual switching both for the set and reset processes, as strongly desired for multi‐bit storage and for an accurate definition of the synaptic weights in neuromorphic systems. A theoretical model based on the physics of mesoscopic structures describing current transport through a nano‐constriction including asymmetric potential drops at the electrodes and non‐linear conductance quantization is provided. The results contribute to a deeper understanding on how to tailor materials properties for novel memristive functionalities. KW - RRAM KW - Multilevel switching Y1 - 2020 U6 - https://doi.org/10.1002/aelm.202000439 SN - 2199-160X VL - 6 IS - 11 ER - TY - GEN A1 - Glukhov, Artem A1 - Milo, Valerio A1 - Baroni, Andrea A1 - Lepri, Nicola A1 - Zambelli, Cristian A1 - Olivo, Piero A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - Statistical model of program/verify algorithms in resistive-switching memories for in-memory neural network accelerators T2 - 2022 IEEE International Reliability Physics Symposium (IRPS) N2 - Resistive-switching random access memory (RRAM) is a promising technology for in-memory computing (IMC) to accelerate training and inference of deep neural networks (DNNs). This work presents the first physics-based statistical model describing (i) multilevel RRAM device program/verify (PV) algorithms by controlled set transition, (ii) the stochastic cycle-to-cycle (C2C) and device-to-device (D2D) variations within the array, and (iii) the impact of such imprecisions on the accuracy of DNN accelerators. The model can handle the full chain from RRAM materials/device parameters to the DNN performance, thus providing a valuable tool for device/circuit codesign of hardware DNN accelerators. KW - RRAM KW - Multilevel switching KW - neural network Y1 - 2022 SN - 978-1-6654-7950-9 SN - 978-1-6654-7951-6 U6 - https://doi.org/10.1109/IRPS48227.2022.9764497 SN - 2473-2001 SP - 3C.3-1 EP - 3C.3-7 PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - GEN A1 - Perez-Bosch Quesada, Emilio A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Rizzi, Tommaso A1 - Wen, Jianan A1 - Ulbricht, Markus A1 - Krstic, Milos A1 - Wenger, Christian A1 - Perez, Eduardo T1 - Experimental Assessment of Multilevel RRAM-based Vector-Matrix Multiplication Operations for In-Memory Computing T2 - IEEE Transactions on Electron Devices N2 - Resistive random access memory (RRAM)-based hardware accelerators are playing an important role in the implementation of in-memory computing (IMC) systems for artificial intelligence applications. The latter heavily rely on vector-matrix multiplication (VMM) operations that can be efficiently boosted by RRAM devices. However, the stochastic nature of the RRAM technology is still challenging real hardware implementations. To study the accuracy degradation of consecutive VMM operations, in this work we programed two RRAM subarrays composed of 8x8 one-transistor-one-resistor (1T1R) cells following two different distributions of conductive levels. We analyze their robustness against 1000 identical consecutive VMM operations and monitor the inherent devices’ nonidealities along the test. We finally quantize the accuracy loss of the operations in the digital domain and consider the trade-offs between linearly distributing the resistive states of the RRAM cells and their robustness against nonidealities for future implementation of IMC hardware systems. KW - RRAM KW - Vector Matrix Multiplication KW - variability Y1 - 2023 U6 - https://doi.org/10.1109/TED.2023.3244509 SN - 0018-9383 VL - 70 IS - 4 SP - 2009 EP - 2014 ER - TY - GEN A1 - Perez, Eduardo A1 - Maldonado, David A1 - Perez-Bosch Quesada, Emilio A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Jimenez-Molinos, Francisco A1 - Wenger, Christian T1 - Parameter Extraction Methods for Assessing Device-to-Device and Cycle-to-Cycle Variability of Memristive Devices at Wafer Scale T2 - IEEE Transactions on Electron Devices N2 - The stochastic nature of the resistive switching (RS) process in memristive devices makes device-to-device (DTD) and cycle-to-cycle (CTC) variabilities relevant magnitudes to be quantified and modeled. To accomplish this aim, robust and reliable parameter extraction methods must be employed. In this work, four different extraction methods were used at the production level (over all the 108 devices integrated on 200-mm wafers manufactured in the IHP 130-nm CMOS technology) in order to obtain the corresponding collection of forming, reset, and set switching voltages. The statistical analysis of the experimental data (mean and standard deviation (SD) values) was plotted by using heat maps, which provide a good summary of the whole data at a glance and, in addition, an easy manner to detect inhomogeneities in the fabrication process. KW - RRAM KW - memristive device KW - cycle-to-cycle variability KW - device-to-device variability Y1 - 2023 U6 - https://doi.org/10.1109/TED.2022.3224886 SN - 0018-9383 VL - 70 IS - 1 SP - 360 EP - 365 ER - TY - GEN A1 - Baroni, Andrea A1 - Glukhov, Artem A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele A1 - Olivo, Piero A1 - Zambelli, Cristian T1 - Low Conductance State Drift Characterization and Mitigation in Resistive Switching Memories (RRAM) for Artificial Neural Networks T2 - IEEE Transactions on Device and Materials Reliability N2 - The crossbar structure of Resistive-switching random access memory (RRAM) arrays enabled the In-Memory Computing circuits paradigm, since they imply the native acceleration of a crucial operations in this scenario, namely the Matrix-Vector-Multiplication (MVM). However, RRAM arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation. A critical one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are mandatory for an accurate multi-level conductance operation. In this work, we analyze the benefits of a new programming algorithm that embodies Set and Reset switching operations to achieve better conductance control and lower variability. Data retention analysis performed with different temperatures for 168 hours evidence its superior performance with respect to standard programming approach. Finally, we explored the benefits of using our methodology at a higher abstraction level, through the simulation of an Artificial Neural Network for image recognition task (MNIST dataset). The accuracy achieved shows higher performance stability over temperature and time. KW - RRAM KW - neural network KW - Multilevel switching Y1 - 2022 U6 - https://doi.org/10.1109/TDMR.2022.3182133 SN - 1530-4388 VL - 22 IS - 3 SP - 340 EP - 347 ER - TY - GEN A1 - Franck, Max A1 - Dabrowski, Jaroslaw A1 - Schubert, Markus Andreas A1 - Wenger, Christian A1 - Lukosius, Mindaugas T1 - Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition T2 - Nanomaterials N2 - The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth KW - Boron nitride KW - 2d materials KW - Chemical vapour deposition Y1 - 2022 U6 - https://doi.org/10.3390/nano12193260 SN - 2079-4991 VL - 12 IS - 19 ER - TY - GEN A1 - Stanke, Sandra A1 - Wenger, Christian A1 - Bier, Frank F. A1 - Hölzel, Ralph T1 - AC electrokinetic immobilization of influenza virus T2 - Electrophoresis N2 - The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented. KW - dielectrophoresis KW - immobilization KW - virus Y1 - 2022 U6 - https://doi.org/10.1002/elps.202100324 SN - 1522-2683 VL - 43 IS - 12 SP - 1309 EP - 1321 ER - TY - GEN A1 - Perez-Bosch Quesada, Emilio A1 - Rizzi, Tommaso A1 - Gupta, Aditya A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Schubert, Andreas A1 - Pechmann, Stefan A1 - Jia, Ruolan A1 - Uhlmann, Max A1 - Hagelauer, Amelie A1 - Wenger, Christian A1 - Perez, Eduardo T1 - Multi-Level Programming on Radiation-Hard 1T1R Memristive Devices for In-Memory Computing T2 - 14th Spanish Conference on Electron Devices (CDE 2023), Valencia, Spain, 06-08 June 2023 N2 - This work presents a quasi-static electrical characterization of 1-transistor-1-resistor memristive structures designed following hardness-by-design techniques integrated in the CMOS fabrication process to assure multi-level capabilities in harsh radiation environments. Modulating the gate voltage of the enclosed layout transistor connected in series with the memristive device, it was possible to achieve excellent switching capabilities from a single high resistance state to a total of eight different low resistance states (more than 3 bits). Thus, the fabricated devices are suitable for their integration in larger in-memory computing systems and in multi-level memory applications. Index Terms—radiation-hard, hardness-by-design, memristive devices, Enclosed Layout Transistor, in-memory computing KW - RRAM Y1 - 2023 SN - 979-8-3503-0240-0 U6 - https://doi.org/10.1109/CDE58627.2023.10339525 PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - GEN A1 - Zahari, Finn A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Kohlstedt, Hermann A1 - Wenger, Christian A1 - Ziegler, Martin T1 - Analogue pattern recognition with stochastic switching binary CMOS‑integrated memristive devices T2 - Scientific Reports N2 - Biological neural networks outperform todays computer technology in terms of power consumption and computing speed when associative tasks, like pattern recognition, are to be solved. The analogue and massive parallel in-memory computing in biology differs strongly with conventional transistor electronics using the von Neumann architecture. Therefore, novel bio-inspired computing architectures are recently highly investigated in the area of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are used to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology in neuromorphic systems. However, dealing with the inherent stochasticity of the resistive switching effect can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail and their use in a stochastic artificial neural network (StochANN) to solve the MINST pattern recognition task is examined. A mixed-signal implementation with hardware synapses and software neurons as well as numerical simulations show the proposed concept of stochastic computing is able to handle analogue data with binary memory cells. KW - RRAM KW - memristive device KW - neural network KW - HfO2 Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-71334-x SN - 2045-2322 VL - 10 ER - TY - GEN A1 - Zanotti, Tommaso A1 - Puglisi, Francesco Maria A1 - Milo, Valerio A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Ossorio, Óscar G. A1 - Wenger, Christian A1 - Pavan, Paolo A1 - Olivo, Piero A1 - Ielmini, Daniele T1 - Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays T2 - IEEE Transactions on Electron Devices N2 - Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25- μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation. KW - RRAM KW - in-memory computing KW - HfO2 Y1 - 2020 U6 - https://doi.org/10.1109/TED.2020.3025271 SN - 0018-9383 SN - 1557-9646 VL - 67 IS - 11 SP - 4611 EP - 4615 ER - TY - GEN A1 - Romero-Zaliz, Rocío A1 - Perez, Eduardo A1 - Jimenez-Molinos, Francisco A1 - Wenger, Christian A1 - Roldan, Juan Bautista T1 - Study of Quantized Hardware Deep Neural Networks Based on Resistive Switching Devices, Conventional versus Convolutional Approaches T2 - Electronics (MDPI) N2 - A comprehensive analysis of two types of artificial neural networks (ANN) is performed to assess the influence of quantization on the synaptic weights. Conventional multilayer-perceptron (MLP) and convolutional neural networks (CNN) have been considered by changing their features in the training and inference contexts, such as number of levels in the quantization process, the number of hidden layers on the network topology, the number of neurons per hidden layer, the image databases, the number of convolutional layers, etc. A reference technology based on 1T1R structures with bipolar memristors including HfO2 dielectrics was employed, accounting for different multilevel schemes and the corresponding conductance quantization algorithms. The accuracy of the image recognition processes was studied in depth. This type of studies are essential prior to hardware implementation of neural networks. The obtained results support the use of CNNs for image domains. This is linked to the role played by convolutional layers at extracting image features and reducing the data complexity. In this case, the number of synaptic weights can be reduced in comparison to conventional MLPs. KW - RRAM KW - resistive switching KW - neural network Y1 - 2021 U6 - https://doi.org/10.3390/electronics10030346 SN - 2079-9292 VL - 10 IS - 3 ER - TY - GEN A1 - Soltani Zarrin, Pouya A1 - Rockendorf, Niels A1 - Wenger, Christian T1 - In-Vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Machine Learning Tools T2 - IEEE Access N2 - Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease and a major cause of morbidity and mortality worldwide. Although a curative therapy has yet to be found, permanent monitoring of biomarkers that reflect the disease progression plays a pivotal role for the effective management of COPD. The accurate examination of respiratory tract fluids like saliva is a promising approach for staging the disease and predicting its upcoming exacerbations in a Point-of-Care (PoC) environment. Nonetheless, this approach is only feasible by concurrent consideration of patients' demographic and medical parameters. Therefore, Machine Learning (ML) tools are necessary for the comprehensive recognition of COPD in a PoC setting. As a result, the objective of this work was to implement ML tools on the data acquired from characterizing saliva samples of COPD patients and healthy controls for classification purposes. First, a permittivity biosensor was used to characterize dielectric properties of saliva samples and, subsequently, ML tools were applied on the acquired data for classification. The XGBoost gradient boosting algorithm provided a high classification accuracy of 91.25%, making it a promising model for COPD recognition. Integration of this model on a neuromorphic chip, in the future, will enable the real-time detection of COPD in PoC, with low energy consumption and high patient privacy. KW - COPD KW - Machine learning KW - Point of care Y1 - 2020 U6 - https://doi.org/10.1109/ACCESS.2020.3023971 SN - 2169-3536 VL - Vol. 8 SP - 168053 EP - 168060 ER - TY - GEN A1 - Bogun, Nicolas A1 - Perez-Bosch Quesada, Emilio A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Kloes, Alexander A1 - Schwarz, Mike T1 - Analytical Calculation of Inference in Memristor-based Stochastic Artificial Neural Networks T2 - 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), 23-24 June 2022 , Wrocław, Poland N2 - The impact of artificial intelligence on human life has increased significantly in recent years. However, as the complexity of problems rose aswell, increasing system features for such amount of data computation became troublesome due to the von Neumann’s computer architecture. Neuromorphic computing aims to solve this problem by mimicking the parallel computation of a human brain. For this approach, memristive devices are used to emulate the synapses of a human brain. Yet, common simulations of hardware based networks require time consuming Monte-Carlo simulations to take into account the stochastic switching of memristive devices. This work presents an alternative concept making use of the convolution of the probability distribution functions (PDF) of memristor currents by its equivalent multiplication in Fourier domain. An artificial neural network is accordingly implemented to perform the inference stage with handwritten digits. KW - RRAM KW - neural network Y1 - 2022 SN - 978-83-63578-22-0 SN - 978-83-63578-21-3 SN - 978-1-6654-6176-4 U6 - https://doi.org/10.23919/MIXDES55591.2022.9838321 SP - 83 EP - 88 ER - TY - GEN A1 - Soltani Zarrin, Pouya A1 - Zahari, Finn A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Perez, Eduardo A1 - Kohlstedt, Hermann A1 - Wenger, Christian T1 - Neuromorphic on‑chip recognition of saliva samples of COPD and healthy controls using memristive devices T2 - Scientific Reports N2 - Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. The results of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing unseen COPD samples with accuracy and sensitivity values of 89% and 86%, respectively. Integration of this technology into personalized healthcare devices will enable the better management of chronic diseases such as COPD. KW - RRAM KW - memristive device KW - neural network Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-76823-7 SN - 2045-2322 VL - 10 ER - TY - GEN A1 - Lukosius, Mindaugas A1 - Lukose, Rasuolė A1 - Lisker, Marco A1 - Luongo, G. A1 - Elviretti, M. A1 - Mai, Andreas A1 - Wenger, Christian T1 - Graphene Research in 200 mm CMOS Pilot Line T2 - 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), 2022 N2 - Due to the unique electronic structures, graphene and other 2D Materials are considered as materials which can enable and extend the functionalities and performance in a large variety of applications, among them in microelectronics. At this point, the investigation and preparation of graphene devices in conditions resembling as close as possible the Si technology environment is of highest importance.Towards these goals, this paper focuses on the full spectra of graphene research aspects in 200mm pilot line. We investigated different process module developments such as CMOS compatible growth of high quality graphene on germanium and its growth mechanisms, transfer related challenges on target substrates, patterning, passivation and various concepts of contacting of graphene on a full 200 mm wafers. Finally, we fabricated proof-of-concept test structures e.g. TLM, Hall bars and capacitor structures to prove the feasibility of graphene processing in the pilot line of IHP. KW - Graphene KW - CMOS Y1 - 2022 SN - 978-953-233-103-5 SN - 978-953-233-102-8 SN - 978-1-6654-8434-3 U6 - https://doi.org/10.23919/MIPRO55190.2022.9803362 SN - 2623-8764 SN - 1847-3938 SP - 113 EP - 117 ER - TY - GEN A1 - Baroni, Andrea A1 - Zambelli, Cristian A1 - Olivo, Piero A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - Tackling the Low Conductance State Drift through Incremental Reset and Verify in RRAM Arrays T2 - 2021 IEEE International Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, USA, 10 December 2021 N2 - Resistive switching memory (RRAM) is a promising technology for highly efficient computing scenarios. RRAM arrays enabled the acceleration of neural networks for artificial intelligence and the creation of In-Memory Computing circuits. However, the arrays are affected by several issues materializing in conductance variations that might cause severe performance degradation in those applications. Among those, one is related to the drift of the low conductance states appearing immediately at the end of program and verify algorithms that are fundamental for an accurate Multi-level conductance operation. In this work, we tackle the issue by developing an Incremental Reset and Verify technique showing enhanced variability and reliability features compared with a traditional refresh-based approach. KW - RRAM KW - resistive switching KW - neural network Y1 - 2021 SN - 978-1-6654-1794-5 SN - 978-1-6654-1795-2 U6 - https://doi.org/10.1109/IIRW53245.2021.9635613 SN - 2374-8036 PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - GEN A1 - Milo, Valerio A1 - Anzalone, Francesco A1 - Zambelli, Cristian A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Ossorio, Óscar G. A1 - Olivo, Piero A1 - Wenger, Christian A1 - Ielmini, Daniele T1 - Optimized programming algorithms for multilevel RRAM in hardware neural networks T2 - IEEE International Reliability Physics Symposium (IRPS), 2021 N2 - A key requirement for RRAM in neural network accelerators with a large number of synaptic parameters is the multilevel programming. This is hindered by resistance imprecision due to cycle-to-cycle and device-to-device variations. Here, we compare two multilevel programming algorithms to minimize resistance variations in a 4-kbit array of HfO 2 RRAM. We show that gate-based algorithms have the highest reliability. The optimized scheme is used to implement a neural network with 9-level weights, achieving 91.5% (vs. software 93.27%) in MNIST recognition. KW - RRAM KW - Multilevel switching KW - neural network KW - memristive switching Y1 - 2021 SN - 978-1-7281-6894-4 U6 - https://doi.org/10.1109/IRPS46558.2021.9405119 SN - 1938-1891 ER - TY - GEN A1 - Dirkmann, Sven A1 - Kaiser, Jan A1 - Wenger, Christian A1 - Mussenbrock, Thomas T1 - Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices T2 - Plasma Sources Science and Technology Y1 - 2018 U6 - https://doi.org/10.1021/acsami.7b19836 SN - 1361-6595 SN - 0963-0252 VL - 10 IS - 17 SP - 14857 EP - 14868 ER - TY - GEN A1 - Mahmoodinezhad, Ali A1 - Morales, Carlos A1 - Naumann, Franziska A1 - Plate, Paul A1 - Meyer, Robert A1 - Janowitz, Christoph A1 - Henkel, Karsten A1 - Kot, Małgorzata A1 - Zöllner, Marvin Hartwig A1 - Wenger, Christian A1 - Flege, Jan Ingo T1 - Low-temperature atomic layer deposition of indium oxide thin films using trimethylindium and oxygen plasma T2 - Journal of Vacuum Science and Technology A N2 - Indium oxide (InxOy) thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) using trimethylindium and oxygen plasma in a low-temperature range of 80–200 °C. The optical properties, chemical composition, crystallographic structure, and electrical characteristics of these layers were investigated by spectroscopic ellipsometry (SE), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), as well as current-voltage and capacitance-voltage measurements. The SE results yielded a nearly constant growth rate of 0.56 Å per cycle and a thickness inhomogeneity of ≤1.2% across 4-in. substrates in the temperature range of 100–150 °C. The refractive index (at 632.8 nm) was found to be 2.07 for the films deposited at 150 °C. The PEALD-InxOy layers exhibit a direct (3.3 ± 0.2 eV) and an indirect (2.8 ± 0.1 eV) bandgap with an uptrend for both with increasing substrate temperature. Based on XPS characterization, all InxOy samples are free of carbon impurities and show a temperature-dependent off-stoichiometry indicating oxygen vacancies. XRD diffraction patterns demonstrate an onset of crystallization at 150 °C. Consistent with the optical, XPS, and XRD data, the films deposited at ≥150 °C possess higher electrical conductivity. Our findings prove that a low-temperature PEALD process of InxOy is feasible and promising for a high-quality thin-film deposition without chemical impurities on thermally fragile substrates. KW - Indium oxide KW - Plasma-enhanced atomic layer deposition KW - X-ray photoelectron spectroscopy KW - Ellipsometry KW - X-ray diffraction KW - Electrical properties Y1 - 2021 U6 - https://doi.org/10.1116/6.0001375 SN - 0734-2101 SN - 1520-8559 VL - 39 IS - 6 ER - TY - GEN A1 - Janowitz, Christoph A1 - Mahmoodinezhad, Ali A1 - Kot, Małgorzata A1 - Morales, Carlos A1 - Naumann, Franziska A1 - Plate, Paul A1 - Zöllner, Marvin Hartwig A1 - Bärwolf, Florian A1 - Stolarek, David A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Toward controlling the Al2O3/ZnO interface properties by in situ ALD preparation T2 - Dalton Transactions N2 - An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters. KW - ALD heterojunction KW - band alignement KW - ZnO KW - Al2O3 KW - interface properties Y1 - 2022 U6 - https://doi.org/10.1039/D1DT04008A SN - 1477-9234 SN - 1477-9226 VL - 51 SP - 9291 EP - 9301 ER - TY - GEN A1 - Fritscher, Markus A1 - Knödtel, Johannes A1 - Mallah, Maen A1 - Pechmann, Stefan A1 - Perez-Bosch Quesada, Emilio A1 - Rizzi, Tommaso A1 - Wenger, Christian A1 - Reichenbach, Marc T1 - Mitigating the Effects of RRAM Process Variation on the Accuracy of Artifical Neural Networks T2 - Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2021. Lecture Notes in Computer Science N2 - Weight storage is a key challenge in the efficient implementation of artificial neural networks. Novel memory technologies such as RRAM are able to greatly improve density and introduce non-volatility and multibit capabilities to this component of ANN accelerators. The usage of RRAM in this domain comes with downsides, mainly caused by cycle-to-cycle and device-to-device variability leading to erroneous readouts, greatly affecting digital systems. ANNs have the ability to compensate for this by their inherent redundancy and usually exhibit a gradual deterioration in the accuracy of the task at hand. This means, that slight error rates can be acceptable for weight storage in an ANN accelerator. In this work we link device-to-device variability to the accuracy of an ANN for such an accelerator. From this study, we can estimate how strongly a certain net is affected by a certain device parameter variability. This methodology is then used to present three mitigation strategies and to evaluate how they affect the reaction of the network to variability: a) Dropout Layers b) Fault-Aware Training c) Redundancy. These mitigations are then evaluated by their ability to improve accuracy and to lower hardware overhead by providing data for a real-word example. We improved this network’s resilience in such a way that it could tolerate double the variation in one of the device parameters (standard deviation of the oxide thickness can be 0.4 nm instead of 0.2 nm while maintaining sufficient accuracy.) KW - RRAM KW - memristive device KW - neural network Y1 - 2022 SN - 978-3-031-04579-0 SN - 978-3-031-04580-6 U6 - https://doi.org/10.1007/978-3-031-04580-6_27 SN - 0302-9743 SN - 1611-3349 SP - 401 EP - 417 PB - Springer ER - TY - GEN A1 - Pechmann, Stefan A1 - Mai, Timo A1 - Völkel, Matthias A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Perez, Eduardo A1 - Perez-Bosch Quesada, Emilio A1 - Reichenbach, Marc A1 - Wenger, Christian A1 - Hagelauer, Amelie T1 - A Versatile, Voltage-Pulse Based Read and Programming Circuit for Multi-Level RRAM Cells T2 - Electronics N2 - In this work, we present an integrated read and programming circuit for Resistive Random Access Memory (RRAM) cells. Since there are a lot of different RRAM technologies in research and the process variations of this new memory technology often spread over a wide range of electrical properties, the proposed circuit focuses on versatility in order to be adaptable to different cell properties. The circuit is suitable for both read and programming operations based on voltage pulses of flexible length and height. The implemented read method is based on evaluating the voltage drop over a measurement resistor and can distinguish up to eight different states, which are coded in binary, thereby realizing a digitization of the analog memory value. The circuit was fabricated in the 130 nm CMOS process line of IHP. The simulations were done using a physics-based, multi-level RRAM model. The measurement results prove the functionality of the read circuit and the programming system and demonstrate that the read system can distinguish up to eight different states with an overall resistance ratio of 7.9. KW - RRAM KW - Multilevel switching KW - Programming circuit Y1 - 2021 U6 - https://doi.org/10.3390/electronics10050530 SN - 2079-9292 VL - 10 IS - 5 ER - TY - GEN A1 - Reiser, Daniel A1 - Reichenbach, Marc A1 - Rizzi, Tommaso A1 - Baroni, Andrea A1 - Fritscher, Markus A1 - Wenger, Christian A1 - Zambelli, Cristian A1 - Bertozzi, Davide T1 - Technology-Aware Drift Resilience Analysis of RRAM Crossbar Array Configurations T2 - 21st IEEE Interregional NEWCAS Conference (NEWCAS), 26-28 June 2023, Edinburgh, United Kingdom N2 - In-memory computing with resistive-switching random access memory (RRAM) crossbar arrays has the potential to overcome the major bottlenecks faced by digital hardware for data-heavy workloads such as deep learning. However, RRAM devices are subject to several non-idealities that result in significant inference accuracy drops compared with software baseline accuracy. A critical one is related to the drift of the conductance states appearing immediately at the end of program and verify algorithms that are mandatory for accurate multi-level conductance operation. The support of drift models in state-of-the-art simulation tools of memristive computationin-memory is currently only in the early stage, since they overlook key device- and array-level parameters affecting drift resilience such as the programming algorithm of RRAM cells, the choice of target conductance states and the weight-toconductance mapping scheme. The goal of this paper is to fully expose these parameters to RRAM crossbar designers as a multi-dimensional optimization space of drift resilience. For this purpose, a simulation framework is developed, which comes with the suitable abstractions to propagate the effects of those RRAM crossbar configuration parameters to their ultimate implications over inference performance stability. KW - RRAM Y1 - 2023 SN - 979-8-3503-0024-6 SN - 979-8-3503-0025-3 U6 - https://doi.org/10.1109/NEWCAS57931.2023 PB - IEEE CY - Piscataway, NJ ER - TY - GEN A1 - Uhlmann, Max A1 - Pérez-Bosch Quesada, Emilio A1 - Fritscher, Markus A1 - Pérez, Eduardo A1 - Schubert, Markus Andreas A1 - Reichenbach, Marc A1 - Ostrovskyy, Philip A1 - Wenger, Christian A1 - Kahmen, Gerhard T1 - One-Transistor-Multiple-RRAM Cells for Energy-Efficient In-Memory Computing T2 - 21st IEEE Interregional NEWCAS Conference (NEWCAS) N2 - The use of resistive random-access memory (RRAM) for in-memory computing (IMC) architectures has significantly improved the energy-efficiency of artificial neural networks (ANN) over the past years. Current RRAM-technologies are physically limited to a defined unambiguously distinguishable number of stable states and a maximum resistive value and are compatible with present complementary metal-oxide semiconductor (CMOS)-technologies. In this work, we improved the accuracy of current ANN models by using increased weight resolutions of memristive devices, combining two or more in-series RRAM cells, integrated in the back end of line (BEOL) of the CMOS process. Based on system level simulations, 1T2R devices were fabricated in IHP's 130nm SiGe:BiCMOS technology node, demonstrating an increased number of states. We achieved an increase in weight resolution from 3 bit in ITIR cells to 6.5 bit in our 1T2R cell. The experimental data of 1T2R devices gives indications for the performance and energy-efficiency improvement in ITNR arrays for ANN applications. KW - RRAM KW - In-Memory Computing Y1 - 2023 SN - 979-8-3503-0024-6 SN - 979-8-3503-0025-3 U6 - https://doi.org/10.1109/NEWCAS57931.2023.10198073 SN - 2474-9672 SN - 2472-467X PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - CHAP A1 - Wen, Jianan A1 - Vargas, Fabian Luis A1 - Zhu, Fukun A1 - Reiser, Daniel A1 - Baroni, Andrea A1 - Fritscher, Markus A1 - Perez, Eduardo A1 - Reichenbach, Marc A1 - Wenger, Christian A1 - Krstic, Milos T1 - Cycle-Accurate FPGA Emulation of RRAM Crossbar Array: Efficient Device and Variability Modeling with Energy Consumption Assessment T2 - 2024 IEEE 25th Latin American Test Symposium (LATS) N2 - Emerging device technologies such as resistive RAM (RRAM) are increasingly recognized in enhancing system performance, particularly in applications demanding extensive vector-matrix multiplications (VMMs) with high parallelism. However, a significant limitation in current electronics design automation (EDA) tools is their lack of support for rapid prototyping, design space exploration, and the integration of inherent process-dependent device variability into system-level simulations, which is essential for assessing system reliability. To address this gap, we introduce a field-programmable gate array (FPGA) based emulation approach for RRAM crossbars featuring cycle-accurate emulations in real time without relying on complex device models. Our approach is based on pre-generated look-up tables (LUTs) to accurately represent the RRAM device behavior. To efficiently model the device variability at the system level, we propose using the multivariate kernel density estimation (KDE) method to augment the measured RRAM data. The proposed emulator allows precise latency determination for matrix mapping and computation operations. Meanwhile, by coupling with the NeuroSim framework, the corresponding energy consumption can be estimated. In addition to facilitating a range of in-depth system assessments, experimental results suggest a remarkable reduction of emulation time compared to the classic behavioral simulation. KW - RRAM Y1 - 2024 U6 - https://doi.org/10.1109/LATS62223.2024.10534601 PB - IEEE ER - TY - GEN A1 - Morales, Carlos A1 - Mahmoodinezhad, Ali A1 - Tschammer, Rudi A1 - Kosto, Yuliia A1 - Alvarado Chavarin, Carlos A1 - Schubert, Markus Andreas A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Combination of Multiple Operando and In-Situ Characterization Techniques in a Single Cluster System for Atomic Layer Deposition: Unraveling the Early Stages of Growth of Ultrathin Al2O3 Films on Metallic Ti Substrates T2 - Inorganics N2 - This work presents a new ultra-high vacuum cluster tool to perform systematic studies of the early growth stages of atomic layer deposited (ALD) ultrathin films following a surface science approach. By combining operando (spectroscopic ellipsometry and quadrupole mass spectrometry) and in situ (X-ray photoelectron spectroscopy) characterization techniques, the cluster allows us to follow the evolution of substrate, film, and reaction intermediates as a function of the total number of ALD cycles, as well as perform a constant diagnosis and evaluation of the ALD process, detecting possible malfunctions that could affect the growth, reproducibility, and conclusions derived from data analysis. The homemade ALD reactor allows the use of multiple precursors and oxidants and its operation under pump and flow-type modes. To illustrate our experimental approach, we revisit the well-known thermal ALD growth of Al2O3 using trimethylaluminum and water. We deeply discuss the role of the metallic Ti thin film substrate at room temperature and 200 °C, highlighting the differences between the heterodeposition (<10 cycles) and the homodeposition (>10 cycles) growth regimes at both conditions. This surface science approach will benefit our understanding of the ALD process, paving the way toward more efficient and controllable manufacturing processes. KW - Atomic layer deposition (ALD) KW - in-situ KW - operando KW - X-ray photoelectron spectroscopy KW - ellipsometry KW - quadrupol mass spectrometry (QMS) Y1 - 2023 U6 - https://doi.org/10.3390/inorganics11120477 SN - 2304-6740 VL - 11 IS - 12 ER - TY - GEN A1 - Kosto, Yuliia A1 - Tschammer, Rudi A1 - Morales, Carlos A1 - Henkel, Karsten A1 - Flege, Jan Ingo A1 - Ratzke, Markus A1 - Fischer, Inga Anita A1 - Costina, Ioan A1 - Alvarado Chavarin, Carlos A1 - Wenger, Christian T1 - Rational design and development of room temperature hydrogen sensors compatible with CMOS technology: a necessary step for the coming renewable hydrogen economy T2 - Proceedings of iCampus Conference Cottbus 2024 N2 - The transition towards a new, renewable energy system based on green energy vectors, such as hydrogen, requires not only direct energy conversion and storage systems, but also the development of auxiliary components, such as highly sensitive hydrogen gas sensors integrated into mass devices that operate at ambient conditions. Despite the recent advances in nanostructured metal oxide thin films in terms of simple fabrication processes and compatibility with integrated circuits, high sensitivity, and short response/recovery times usually require the use of expensive noble metals or elevated tem-peratures (>250 ºC), which results in high power consumption and poor long-term stability. This article presents the first steps of the work on developing a novel resistive hydrogen gas sensor based on ultrathin cerium oxide films, compatible with complementary metal oxide semiconductor technology and capable of operating at room temperature. Here, we show a multidisciplinary bottom-up approach combining different work areas for the sensor development, such as sensor architecture, sensing mechanism and deposition strategy of the active layer, electrical contact design depending on the desired electrical output, and fast testing under controlled environments. KW - gas sensors KW - micro-structering KW - atomic layer deposition KW - sensor platform Y1 - 2024 SN - 978-3-910600-00-3 U6 - https://doi.org/10.5162/iCCC2024/P21 SP - 182 EP - 185 PB - AMA Service GmbH CY - Wunstorf ER - TY - GEN A1 - Ossorio, Óscar G. A1 - Vinuesa, Guillermo A1 - Garcia, Hector A1 - Sahelices, Benjamin A1 - Dueñas, Salvador A1 - Castán, Helena A1 - Perez, Eduardo A1 - Mahadevaiah, Mamathamba Kalishettyhalli A1 - Wenger, Christian T1 - Performance Assessment of Amorphous HfO2-based RRAM Devices for Neuromorphic Applications T2 - ECS Transactions N2 - The use of thin layers of amorphous hafnium oxide has been shown to be suitable for the manufacture of Resistive Random-Access memories (RRAM). These memories are of great interest because of their simple structure and non-volatile character. They are particularly appealing as they are good candidates for substituting flash memories. In this work, the performance of the MIM structure that takes part of a 4 kbit memory array based on 1-transistor-1-resistance (1T1R) cells was studied in terms of control of intermediate states and cycle durability. DC and small signal experiments were carried out in order to fully characterize the devices, which presented excellent multilevel capabilities and resistive-switching behavior. KW - RRAM KW - resistive switching KW - HfO2 Y1 - 2021 U6 - https://doi.org/10.1149/10202.0029ecst SN - 1938-6737 SN - 1938-5862 VL - 102 IS - 2 SP - 29 EP - 35 ER - TY - GEN A1 - Perez, Eduardo A1 - Ossorio, Óscar G. A1 - Dueñas, Salvador A1 - Castán, Helena A1 - García, Hector A1 - Wenger, Christian T1 - Programming Pulse Width Assessment for Reliable and Low-Energy Endurance Performance in Al:HfO2-Based RRAM Arrays T2 - Electronics (MDPI) N2 - A crucial step in order to achieve fast and low-energy switching operations in resistive random access memory (RRAM) memories is the reduction of the programming pulse width. In this study, the incremental step pulse with verify algorithm (ISPVA) was implemented by using different pulse widths between 10 μ s and 50 ns and assessed on Al-doped HfO 2 4 kbit RRAM memory arrays. The switching stability was assessed by means of an endurance test of 1k cycles. Both conductive levels and voltages needed for switching showed a remarkable good behavior along 1k reset/set cycles regardless the programming pulse width implemented. Nevertheless, the distributions of voltages as well as the amount of energy required to carry out the switching operations were definitely affected by the value of the pulse width. In addition, the data retention was evaluated after the endurance analysis by annealing the RRAM devices at 150 °C along 100 h. Just an almost negligible increase on the rate of degradation of about 1 μ A at the end of the 100 h of annealing was reported between those samples programmed by employing a pulse width of 10 μ s and those employing 50 ns. Finally, an endurance performance of 200k cycles without any degradation was achieved on 128 RRAM devices by using programming pulses of 100 ns width KW - RRAM KW - Reliability Y1 - 2020 U6 - https://doi.org/10.3390/electronics9050864 SN - 2079-9292 VL - 9 IS - 5 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Leszczynski, Sebastian A1 - Richter, Karola A1 - Knaut, Martin A1 - Reif, Johanna A1 - Völkel, Sandra A1 - Albert, Matthias A1 - Wenger, Christian A1 - Bartha, Johann Wolfgang A1 - Mikolajick, Thomas T1 - Improved Graphene-base Heterojunction Transistor with Different Collector Semi-conductors for High-frequency Applications T2 - Advanced Materials Letters N2 - A new kind of transistor device with a graphene monolayer embedded between two n-type silicon layers is fabricated and characterized. The device is called graphene-base heterojunction transistor (GBHT). The base-voltage controls the current of the device flowing from the emitter via graphene to the collector. The transit time for electrons passing by the ultrathin graphene layer is extremely short which makes the device very promising for high frequency RF-electronics. The output current of the device is saturated and clearly modulated by the base voltage. Further, the silicon collector of the GBHT is replaced by germanium to improve the device performance. This enabled the collector current to be increased by almost three orders of magnitude. Also, the common-emitter current gain (Ic/Ib) increased from 10-3 to approximately 0.3 for the newly designed device. However, the ON-OFF ratio of the improved germanium based GBHT has so far been rather low. Further optimizations are necessary in order to fully exploit the potential of the graphene-base heterojunction transistor. KW - Graphene KW - transistor Y1 - 2022 U6 - https://doi.org/10.5185/amlett.2022.011688 SN - 0976-3961 VL - 13 IS - 1 ER - TY - JOUR A1 - Sohal, Rakesh A1 - Lupina, Grzegorz A1 - Lippert, Gunther A1 - Wenger, Christian A1 - Seifarth, Olaf A1 - Schröder, Thomas A1 - Tallarida, Massimo A1 - Schmeißer, Dieter T1 - Interface chemistry of high-k PrxAl2-xO3 (x=2-0) dielectrics on TiN for dynamic random access memory applications KW - high-k KW - dielectric KW - random Y1 - 2008 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Wenger, Christian A1 - Albert, Matthias A1 - Mikolajick, Thomas T1 - Vertical Graphene-Based Transistors for Power Electronics, Optoelectronics and Radio-Frequency Applications T2 - IEEE Nanotechnology Materials and Devices Conference (NMDC), Paestum, Italy, 22-25 October 2023 N2 - The combination of two-dimensional materials, such as graphene, with established thin films offers great opportunities for enabling next-generation vertical transistors for various applications. This paper gives a brief overview about different vertical transistor concepts using twodimensional materials proposed so far, e.g. the hot electron transistor and the Barristor. With the arrival of twodimensional materials, the hot electron transistor also experienced a revival with predicted cut-off frequencies in the THz range. The Barristor overcomes the weak current saturation of lateral graphene field-effect transistors and high on-off ratios up to 107 were demonstrated, which are suitable parameters for logic applications. By combining a semiconductor-graphene-semiconductor design of the simplest hot electron transistor with the Barristor operating principle a new device, called graphene adjustable-barriers transistor, can be realized. This new device concept provides the potential for RF, power electronics, and optoelectronic applications. KW - Graphene Y1 - 2023 SN - 979-8-3503-3546-0 SN - 979-8-3503-3547-7 U6 - https://doi.org/10.1109/NMDC57951.2023.10344102 SN - 2473-0718 SP - 196 EP - 201 PB - Institute of Electrical and Electronics Engineers (IEEE) ER - TY - GEN A1 - Morales, Carlos A1 - Plate, Paul A1 - Marth, Ludwig A1 - Naumann, Franziska A1 - Kot, Małgorzata A1 - Janowitz, Christoph A1 - Kus, Peter A1 - Zöllner, Marvin Hartwig A1 - Wenger, Christian A1 - Henkel, Karsten A1 - Flege, Jan Ingo T1 - Bottom-Up Design of a Supercycle Recipe for Atomic Layer Deposition of Tunable Indium Gallium Zinc Oxide Thin Films T2 - ACS Applied Electronic Materials N2 - We present a successful bottom-up approach to design a generic plasma-enhanced atomic layer deposition (PEALD) supercycle recipe to grow high-quality indium gallium zinc oxide (IGZO) thin films with tunable composition at a relatively low temperature of 150 °C. In situ real-time ellipsometric characterization in combination with ex situ complementary techniques has been used to optimize the deposition process and quality of the films by identifying and solving growth challenges such as degree of oxidation, nucleation delays, or elemental composition. The developed supercycle approach enables facile control of the target composition by adapting the subcycle ratios within the supercycle process. Compared to other low-temperature deposition techniques resulting in amorphous films, our PEALD–IGZO process at 150 °C results in nearly amorphous, nanocrystalline films. The preparation of IGZO films at low temperature by a supercycle PEALD approach allows controlling the thickness, composition, and electrical properties while preventing thermally induced segregation. KW - IGZO KW - PEALD KW - supercycle KW - XPS depth profiling KW - current density Y1 - 2024 U6 - https://doi.org/10.1021/acsaelm.4c00730 SN - 2637-6113 VL - 6 IS - 8 SP - 5694 EP - 5704 PB - American Chemical Society (ACS) ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Richter, Karola A1 - Knaut, Martin A1 - Reif, Johanna A1 - Völkel, Sandra A1 - Jahn, Andreas A1 - Albert, Matthias A1 - Wenger, Christian A1 - Kirchner, Robert A1 - Bartha, Johann Wolfgang A1 - Mikolajick, Thomas T1 - Novel Graphene Adjustable-Barrier Transistor with Ultra-High Current Gain T2 - ACS Applied Materials & Interfaces N2 - A graphene-based three terminal barristor device was proposed to overcome the low on/off ratios and insufficient current saturation of conventional graphene field effect transistors. In this study, we fabricated and analyzed a novel graphene-based transistor, which resembles the structure of the barristor but uses a different operating condition. This new device, termed graphene adjustable-barriers transistor (GABT), utilizes a semiconductor-based gate rather than a metal−insulator gate structure to modulate the device currents. The key feature of the device is the two graphene-semiconductor Schottky barriers with different heights that are controlled simultaneously by the gate voltage. Due to the asymmetry of the barriers, the drain current exceeds the gate current by several orders of magnitude. Thus, the GABT can be considered an amplifier with an alterable current gain. In this work, a silicon−graphene−germanium GABT with an ultra-high current gain (ID/IG up to 8 × 106) was fabricated, and the device functionality was demonstrated. Additionally, a capacitance model is applied to predict the theoretical device performance resulting in an on−off ratio above 106, a swing of 87 mV/dec, and a drivecurrent of about 1 × 106 A/cm2. KW - Graphene KW - Transistor Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c10634 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 34 SP - 39249 EP - 39254 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Knaut, Martin A1 - Völkel, Sandra A1 - Albert, Matthias A1 - Hiess, Andre A1 - Max, Benjamin A1 - Wenger, Christian A1 - Kirchner, Robert A1 - Mikolajick, Thomas T1 - High Gain Graphene Based Hot Electron Transistor with Record High Saturated Output Current Density T2 - Advanced Electronic Materials N2 - Hot electron transistors (HETs) represent an exciting frontier in semiconductor technology, holding the promise of high-speed and high-frequency electronics. With the exploration of two-dimensional materials such as graphene and new device architectures, HETs are poised to revolutionize the landscape of modern electronics. This study highlights a novel HET structure with a record output current density of 800 A/cm² and a high current gain α, fabricated using a scalable fabrication approach. The HET structure comprises two-dimensional hexagonal boron nitride (hBN) and graphene layers wet transferred to a germanium substrate. The combination of these materials results in exceptional performance, particularly in terms of the highly saturated output current density. The scalable fabrication scheme used to produce the HET opens up opportunities for large-scale manufacturing. This breakthrough in HET technology holds promise for advanced electronic applications, offering high current capabilities in a practical and manufacturable device. KW - Graphene KW - Transistor Y1 - 2024 U6 - https://doi.org/10.1002/aelm.202300624 SN - 2199-160X VL - 10 IS - 2 ER - TY - GEN A1 - Strobel, Carsten A1 - Alvarado Chavarin, Carlos A1 - Völkel, Sandra A1 - Jahn, Andreas A1 - Hiess, Andre A1 - Knaut, Martin A1 - Albert, Matthias A1 - Wenger, Christian A1 - Steinke, Olaff A1 - Stephan, Ulf A1 - Röhlecke, Sören A1 - Mikolajick, Thomas T1 - Enhanced Electrical Properties of Optimized Vertical Graphene-Base Hot Electron Transistors T2 - ACS Applied Electronic Materials N2 - The arrival of high-mobility two-dimensional materials like graphene leads to the renaissance of former vertical semiconductor–metal–semiconductor (SMS) hot electron transistors. Because of the monolayer thickness of graphene, improved SMS transistors with a semimetallic graphene-base electrode are now feasible for high-frequency applications. In this study we report about a device that consists of amorphous silicon, graphene, and crystalline silicon. For the first time, this device is fabricated by a four-mask lithography process which leads to significant improvements in the device performance. A strongly increased common-emitter current gain of 2% could be achieved while the on–off ratio improved to 1.6 × 105, which is already higher than predicted theoretically. This could be mainly attributed to better interface characteristics and decreased lateral dimensions of the devices. A cutoff frequency of approximately 26 MHz could be forecasted based on the DC measurements of the device. KW - Graphene KW - Transistor Y1 - 2023 U6 - https://doi.org/10.1021/acsaelm.2c01725 SN - 2637-6113 VL - 5 IS - 3 SP - 1670 EP - 1675 ER -