TY - GEN A1 - Kaletta, Udo Christian A1 - Wipf, Christian A1 - Fraschke, Mirko A1 - Wolansky, Dirk A1 - Schubert, Markus Andreas A1 - Schroeder, Thomas A1 - Wenger, Christian T1 - AlN/SiO2/Si3N4/Si(100) based CMOS compatible surface acoustic wave filter with -12.8 dB minimum insertion loss T2 - IEEE Transactions on Electron Devices Y1 - 2015 U6 - https://doi.org/10.1109/TED.2015.2395443 SN - 0018-9383 VL - 62 IS - 3 SP - 764 EP - 768 ER - TY - GEN A1 - Bertaud, Thomas A1 - Walczyk, Damian A1 - Walczyk, Christian A1 - Kubotsch, S. A1 - Wenger, Christian A1 - Schröder, Thomas A1 - Vallée, Christophe A1 - Gonon, P. A1 - Mannequin, C. A1 - Jousseaume, V. A1 - Grampeix, Helen T1 - Resistive Switching of HfO2-based MIM diodes: Impact of the Top Electrode Materials T2 - Thin Solid Films Y1 - 2012 SN - 0040-6090 VL - 520 IS - 14 SP - 4551 EP - 4555 ER - TY - GEN A1 - Bertaud, Thomas A1 - Walczyk, Damian A1 - Sowinska, Małgorzata A1 - Wolansky, Dirk A1 - Tillack, Bernd A1 - Schoof, Gunther A1 - Korolevych, R. A1 - Wenger, Christian A1 - Thiess, Sebastian A1 - Schroeder, Thomas A1 - Walczyk, Christian T1 - HfO2-based RRAM for Embedded Nonvolatile Memory: From Materials Science to Integrated 1T1R RRAM Arrays T2 - ECS transactions Y1 - 2012 SN - 1938-6737 VL - 50 IS - 4 SP - 21 EP - 26 ER - TY - GEN A1 - Pérez, Eduardo A1 - Maldonado, David A1 - Acal, Christian A1 - Ruiz-Castro, Juan Eloy A1 - Aguilera, Ana María A1 - Jimenez-Molinos, Francisco A1 - Roldan, Juan Bautista A1 - Wenger, Christian T1 - Advanced Temperature Dependent Statistical Analysis of Forming Voltage Distributions for Three Different HfO2-Based RRAM Technologies T2 - Solid State Electronics N2 - In this work, voltage distributions of forming operations are analyzed by using an advanced statistical approach based on phase-type distributions (PHD). The experimental data were collected from batches of 128 HfO2-based RRAM devices integrated in 4-kbit arrays. Three di erent switching oxides, namely, polycrystalline HfO2, amorphous HfO2, and Al-doped HfO2, were tested in the temperature range from -40 to 150 oC. The variability of forming voltages has been usually studied by using the Weibull distribution (WD). However, the performance of the PHD analysis demonstrated its ability to better model this crucial operation. The capacity of the PHD to reproduce the experimental data has been validated by means of the Kolmogorov-Smirnov test, while the WD failed in many of the cases studied. In addition, PHD allows to extract information about intermediate probabilistic states that occur in the forming process and the transition probabilities between them; in this manner, we can deepen on the conductive lament formation physics. In particular, the number of intermediate states can be related to the device variability. KW - RRAM KW - HfO2 Y1 - 2021 SN - 0038-1101 SN - 1879-2405 VL - 176 ER - TY - GEN A1 - Mai, Christian A1 - Marschmeyer, Steffen A1 - Peczek, Anna A1 - Kroh, Aleksandra A1 - Jose, Josmy A1 - Reiter, Sebastian A1 - Fischer, Inga Anita A1 - Wenger, Christian A1 - Mai, Andreas T1 - Integration Aspects of Plasmonic TiN-based Nano-Hole-Arrays on Ge Photodetectorsin a 200mm Wafer CMOS Compatible Silicon Technology T2 - ECS Transactions N2 - In this work we present the progress in regard to the integration of a surface plasmon resonance refractive index sensor into a CMOS compatible 200 mm wafer silicon-based technology. Our approach pursues the combination of germanium photodetectors with metallic nanohole arrays. The paper is focused on the technology development to fabricate large area photodetectors based on a modern design concept. In a first iteration we achieved a leakage current density of 82 mA/cm2 at reverse bias of 0.5 V and a maximum optical responsivity of 0.103 A/W measured with TE polarized light at λ = 1310 nm and a reversed bias of 1 V. For the realization of nanohole arrays we used thin Titanium nitride (TiN) layers deposited by a sputtering process. We were able to produce very homogenous TiN layers with a thickness deviation of around 10 % and RMS of 1.413 nm for 150 nm thick TiN layers. KW - plasmonics KW - nanohole array KW - germanium detector Y1 - 2022 U6 - https://doi.org/10.1149/10904.0035ecst SN - 1938-5862 VL - 109 IS - 4 SP - 35 EP - 46 ER - TY - GEN A1 - Reiter, Sebastian A1 - Sengül, Akant A1 - Mai, Christian A1 - Spirito, Davide A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - On-chip refractive index sensors based on plasmonic TiN Nanohole Arrays T2 - 2024 IEEE Silicon Photonics Conference (SiPhotonics) Y1 - 2024 SN - 979-8-3503-9404-7 SN - 979-8-3503-9405-4 U6 - https://doi.org/10.1109/SiPhotonics60897.2024.10544048 SN - 1949-209X ER - TY - GEN A1 - Jose, Josmy A1 - Mai, Christian A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Integration concept of plasmonic TiN nanohole arrays in a 200 mm BiCMOS Si technology for refractive index sensor applications T2 - iCCC2024 - iCampµs Cottbus Conference Y1 - 2024 U6 - https://doi.org/10.5162/iCCC2024/7.2 SP - 96 EP - 99 ER - TY - GEN A1 - Mai, Christian A1 - Peczek, Anna A1 - Kroh, Aleksandra A1 - Jose, Josmy A1 - Reiter, Sebastian A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Towards a CMOS compatible refractive index sensor: cointegration of TiN nanohole arrays and Ge photodetectors in a 200 mm wafer silicon technology T2 - Optics Express N2 - In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm2 (40 µm x 40 µm) show dark current densities of around 129 mA/cm2 and responsivities of 0.114 A/W measured by top illumination (TE polarization; λ = 1310 nm; angle of incidence = 14 °) at a reverse bias of 1 V. Nanohole arrays were structured in a 150 nm thick TiN layer. They were integrated into the back end of line and placed spatially close to the Ge photodetectors. After the metallization, passivation, and pad opening, the nanohole arrays were released with the help of an amorphous silicon stop layer. A significant impact of the TiN nanohole arrays on the optical behavior of the photodetector could be proven on the wafer level. Photocurrent measurements by top illumination confirm a strong dependence of optical properties on the polarization of the incident light and the nanohole array design. We demonstrate very stable photocurrents on the wafer level with a standard deviation of σ < 6%. KW - plasmonics KW - sensor KW - nano hole array Y1 - 2024 U6 - https://doi.org/10.1364/OE.530081 SN - 1094-4087 VL - 32 IS - 17 SP - 29099 EP - 29111 PB - Optica Publishing Group ER - TY - GEN A1 - Dersch, Nadine A1 - Roemer, Christian A1 - Perez, Eduardo A1 - Wenger, Christian A1 - Schwarz, Mike A1 - Iñíguez, Benjamín A1 - Kloes, Alexander T1 - Fast circuit simulation of memristive crossbar arrays with bimodal stochastic synaptic weights T2 - 2024 IEEE Latin American Electron Devices Conference (LAEDC) N2 - This paper presents an approach for highly efficient circuit simulation of hardware-based artificial neural networks by using memristive crossbar array architectures. There are already possibilities to test neural networks with stochastic weights via simulations like the macro model NeuroSim. However, the noise-based variability approach offers more realistic setting options including elements of a classical circuit simulation for more precise analysis of neural networks. With this approach, statistical parameter fluctuations can be simulated based on different distribution functions of devices. In Cadence Virtuoso, a simulation of a crossbar array with 10 synaptic weights following a bimodal distribution, the new approach shows a 1,000x speedup compared to a Monte Carlo simulation. Initial tests of a memristive crossbar array with over 15,000 stochastic weights to classify the MNIST dataset show that the new approach can be used to test the functionality of hardware-based neural networks. KW - RRAM Y1 - 2024 SN - 979-8-3503-6130-8 U6 - https://doi.org/10.1109/LAEDC61552.2024.10555829 SN - 979-8-3503-6129-2 SN - 2835-3471 SP - 1 EP - 4 PB - IEEE ER - TY - GEN A1 - Reiter, Sebastian A1 - Han, Weijia A1 - Mai, Christian A1 - Spirito, Davide A1 - Jose, Josmy A1 - Zöllner, Marvin Hartwig A1 - Fursenko, Oksana A1 - Schubert, Markus Andreas A1 - Stemmler, Ivo A1 - Wenger, Christian A1 - Fischer, Inga Anita T1 - Titanium Nitride Plasmonic Nanohole Arrays for CMOS-compatible integrated refractive index sensing: influence of layer thickness on optical properties T2 - Plasmonics Y1 - 2023 U6 - https://doi.org/10.1007/s11468-023-01810-3 SN - 1557-1963 SP - 1 EP - 13 ER -