TY - CHAP A1 - Fellah, Mamoun A1 - Hezil, Naouel A1 - Abderrahim, Karima A1 - Samad, Mohammed Abdul A1 - Montagne, Alex A1 - Mejias, Alberto A1 - Iost, Alain A1 - Kossman, Stephania A1 - Chekalkin, Timofey A1 - Obrosov, Aleksei A1 - Weiß, Sabine T1 - Investigating the Effect of Sintering Temperature on Structural and Tribological Properties of a Nanostructured Ti–20Nb–13Zr Alloy for Biomedical Applications T2 - Characterization of Minerals, Metals, and Materials N2 - β-type Ti–20Nb–13Zr alloys with low Young’s modulus were prepared at different sintering temperatures (950, 1050, 1150, and 1250 °C). The morphological and structural characteristics of as-prepared samples were investigated by several methods. Wear tests were conducted using a ball-on-plate type oscillating tribometer under different applied loads (2, 10, and 20 N). The morphological characterization indicated that the mean pore and crystallite size continuously decreased with increasing sintering temperature to reach lowest values of 40 nm and 38 nm at 1250 °C, respectively. The relative density of the 1250 °C sintered sample was as high as 98.7%. Moreover, the higher sintering temperature resulted in higher relative density and closed porosity of the sample. Both the friction coefficient and wear rate were lower in the sample sintered at 1250 °C as compared to other samples. This enhancement in tribological properties was attributed to a closed porosity. KW - Ti-20Nb-13Zr KW - Nanobiomaterials KW - Tribological behaviour KW - Nanotribology KW - Sintering KW - Biomedical applications Y1 - 2020 SN - 978-3-030-36628-5 SN - 978-3-030-36627-8 U6 - https://doi.org/10.1007/978-3-030-36628-5_61 SN - 2367-1181 SN - 2367-1696 SP - 619 EP - 629 PB - Springer CY - Cham ER -