TY - GEN A1 - Mauß, Fabian A1 - Nakov, Galin A1 - Wenzel, Paul A1 - Steiner, Rüdiger A1 - Krüger, Christian A1 - Zhang, Yongzeh A1 - Rawat, Rajesh A1 - Borg, Andreas A1 - Perlman, Cathleen A1 - Fröjd, Karin A1 - Lehtiniemi, Harry T1 - Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach T2 - SAE International Journal of Engines Y1 - 2010 SN - 1946-3936 VL - 2 IS - 2 SP - 89 EP - 104 ER - TY - GEN A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Pasternak, Michal A1 - Lehtiniemi, Harry A1 - Perlman, Cathleen A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Three-dimensional computational fluid dynamics engine knock prediction and evaluation based on detailed chemistry and detonation theory T2 - International Journal of Engine Research N2 - Engine knock is an important phenomenon that needs consideration in the development of gasoline-fueled engines. In our days, this development is supported using numerical simulation tools to further understand and predict in-cylinder processes. In this work, a model tool chain which uses a detailed chemical reaction scheme is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition characteristics and the emissions are calculated using a gasoline surrogate reaction scheme containing pathways for oxidation of ethanol, toluene, n-heptane, iso-octane and their mixtures. The combustion is predicted using a combination of the G-equation based flame propagation model utilizing tabulated laminar flame speeds and well-stirred reactors in the burned and … KW - Engine knock is an important phenomenon Y1 - 2018 U6 - https://doi.org/10.1177/1468087417740271 SN - 1468-0874 SN - 2041-3149 VL - 19 IS - 1 SP - 33 EP - 44 ER - TY - GEN A1 - Weber, Kathrin A1 - Li, T. A1 - Løvås, Terese A1 - Perlman, Cathleen A1 - Seidel, Lars A1 - Mauß, Fabian T1 - Stochastic reactor modeling of biomass pyrolysis and gasification T2 - Journal of analytical and applied pyrolysis N2 - Abstract In this paper, a partially stirred stochastic reactor model is presented as an alternative for the modeling of biomass pyrolysis and gasification. Instead of solving transport equations in all spatial dimensions as in CFD simulations, the description of state variables and mixing processes is based on a probability density function, making this approach computationally efficient. The virtual stochastic particles, an ensemble of flow elements consisting of porous solid biomass particles and surrounding gas, mimic the turbulent exchange of heat and mass in practical systems without the computationally expensive resolution of spatial dimensions. Each stochastic particle includes solid phase, pore gas and bulk gas interaction. The reactor model is coupled with a chemical mechanism for both surface and gas phase reactions. A Monte Carlo algorithm with operator splitting … KW - Pyrolysis KW - gasification KW - Stochastic reactor modeling Y1 - 2017 U6 - https://doi.org/10.1016/j.jaap.2017.01.003 SN - 0165-2370 VL - 124 SP - 592 EP - 601 ER - TY - GEN A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Pasternak, Michal A1 - Klauer, Christian A1 - Perlman, Cathleen A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Mode T2 - SAE technical paper KW - Engine Knock Prediction and Evaluation Based Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-0538 SN - 0096-5170 SN - 0148-7191 IS - 2017-01-0538 SP - 11 Seiten ER - TY - GEN A1 - Matrisciano, Andrea A1 - Franken, Tim A1 - Perlman, Cathleen A1 - Borg, Anders A1 - Lehtiniemi, Harry A1 - Mauß, Fabian T1 - Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model T2 - SAE technical papers KW - Development of a Computationally Efficient Progress Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-0512 SN - 0148-7191 SN - 0096-5170 IS - 2017-01-0512 SP - 18 Seiten ER - TY - GEN A1 - Aslanjan, Jana A1 - Klauer, Christian A1 - Perlman, Cathleen A1 - Günther, Vivien A1 - Mauß, Fabian T1 - Simulation of a Three-Way Catalyst Using Transient Single and Multi-Channel Models T2 - SAE technical paper KW - Simulation of a Three-Way Catalyst Using Y1 - 2017 U6 - https://doi.org/10.4271/2017-01-0966 SN - 0148-7191 SN - 0096-5170 IS - 2017-01-0966 ER - TY - CHAP A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Pasternak, Michal A1 - Mauß, Fabian A1 - Lehtiniemi, Harry A1 - Perlman, Cathleen A1 - Ravet, Frédéric ED - Leipertz, Alfred ED - Fröba, Andreas Paul T1 - 3D CFD Engine Knock Predication and Evaluation Based on Detailed Chemistry and Detonation Theory T2 - Motorische Verbrennung : aktuelle Probleme und moderne Lösungsansätze, XIII. Tagung im Haus der Technik Ludwigsburg, 16.-17. März 2017 KW - 3D CFD Engine Knock Y1 - 2017 SN - 978-3-945806-08-1 PB - ESYTEC Energie- und Systemtechnik GmbH CY - Erlangen ER - TY - CHAP A1 - Netzer, Corinna A1 - Seidel, Lars A1 - Pasternak, Michal A1 - Klauer, Christian A1 - Perlman, Cathleen A1 - Ravet, Frédéric A1 - Mauß, Fabian T1 - Impact of Gasoline Octane Rating on Engine Knock using Detailed Chemistry and a Quasi-dimensional Stochastic Reaktior Model T2 - Digital Proceedings of the 8th European Combustion Meeting (ECM 2017), Dubrovnik, Croatia Y1 - 2017 UR - https://www.researchgate.net/publication/319059022 SP - 493 EP - 498 ER - TY - GEN A1 - Svensson, Erik A1 - Li, Changle A1 - Shamun, Sam A1 - Johansson, Bengt A1 - Tuner, Martin A1 - Perlman, Cathleen A1 - Lehtiniemi, Harry A1 - Mauß, Fabian T1 - Potential Levels of Soot, NOx , HC and CO for Methanol Combustion T2 - SAE Technical Papers N2 - Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads. The SRM was able to predict the combustion in terms of pressure trace and rate of heat release. The CO and NOx emissions were matched, however, the HC emissions were underestimated. Finally, the trajectories from the SRM simulations were superimposed on the T-Φ maps to investigate the in engine conditions. The T-Φ map analysis shows that emission of soot are non-existent, formaldehyde can be avoided and that emissions of methane are kept at, compared to diesel combustion, low levels, however CO and NOx levels are similar to diesel combustion. These results were confirmed for engine conditions by the SRM simulations and the engine experiments. KW - Potential Levels of Soot KW - Methanol Combustion Y1 - 2016 U6 - https://doi.org/10.4271/2016-01-0887 SN - 0148-7191 SN - 0096-5170 IS - 2016-01-0887 SP - 17 Seiten ER - TY - CHAP A1 - Matrisciano, Andrea A1 - Borg, Anders A1 - Perlman, Cathleen A1 - Pasternak, Michal A1 - Seidel, Lars A1 - Netzer, Corinna A1 - Mauß, Fabian A1 - Lehtiniemi, Harry T1 - Simulation of DI-Diesel combustion using tabulated chemistry approach T2 - 1st Conference on Combustion Processes in Marine and Automotive Engines, 7th - 8th June 2016, Lund, Schweden KW - Simulation of DI-Diesel Y1 - 2016 UR - http://ecco-mate.eu/images/Training%20events/LUND/ECCO-MATE_C1_Proceedings.pdf SP - 44 EP - 47 ER -