TY - GEN A1 - Caprara, Sergio A1 - Di Castro, Carlo A1 - Mirarchi, Giovanni A1 - Seibold, Götz A1 - Grilli, Marco T1 - Dissipation-driven strange metal behavior T2 - Communications Physics N2 - Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals. KW - Electronic properties and materials KW - Superconducting properties and materials Y1 - 2022 UR - https://www.nature.com/articles/s42005-021-00786-y U6 - https://doi.org/10.1038/s42005-021-00786-y SN - 2399-3650 IS - 5 SP - 1 EP - 7 ER - TY - GEN A1 - Seibold, Götz A1 - Arpaia, Riccardo A1 - Ying Ying, Peng A1 - Fumagalli, Roberto A1 - Braicovich, Lucio A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Ghiringhelli, Giacomo Claudio A1 - Caprara, Sergio T1 - Strange metal behaviour from charge density fluctuations in cuprates T2 - Communications Physics N2 - Besides the mechanism responsible for high critical temperature superconductivity, the grand unresolved issue of the cuprates is the occurrence of a strange metallic state above the so-called pseudogap temperature T*. Even though such state has been successfully described within a phenomenological scheme, the so-called Marginal Fermi-Liquid theory, a microscopic explanation is still missing. However, recent resonant X-ray scattering experiments identified a new class of charge density fluctuations characterized by low characteristic energies and short correlation lengths, which are related to the well-known charge density waves. These fluctuations are present over a wide region of the temperature-vs-doping phase diagram and extend well above T*. Here we investigate the consequences of charge density fluctuations on the electron and transport properties and find that they can explain the strange metal phenomenology. Therefore, charge density fluctuations are likely the long-sought microscopic mechanism underlying the peculiarities of the metallic state of cuprates. KW - Electronic properties and materials KW - Superconducting properties and materials Y1 - 2021 UR - https://www.nature.com/articles/s42005-020-00505-z U6 - https://doi.org/10.1038/s42005-020-00505-z SN - 2399-3650 VL - 4 SP - 1 EP - 6 ER - TY - GEN A1 - Mirarchi, Giovanni A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Caprara, Sergio T1 - The Strange-Metal Behavior of Cuprates T2 - Condensed Matter N2 - Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat. KW - high-temperature superconductors KW - cuprates KW - charge density fluctuations KW - strange metal KW - dynamical quantum criticality Y1 - 2022 UR - https://www.mdpi.com/2410-3896/7/1/29/htm U6 - https://doi.org/10.3390/condmat7010029 SN - 2410-3896 VL - 7 IS - 1 SP - 1 EP - 17 ER - TY - GEN A1 - Seibold, Götz A1 - Becca, Federico A1 - Bucci, F. A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Spectral properties of incommensurate charge-density wave systems Y1 - 2000 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo T1 - Fermi surface and electronic structure of incommensurate charge-density-wave systems Y1 - 2000 ER - TY - GEN A1 - Seibold, Götz A1 - Capati, Matteo A1 - Grilli, Marco A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Hidden ferronematic order in underdoped cuprates T2 - Physical Review B N2 - We study a model for low-doped cuprates where holes aggregate into oriented stripe segments which have a magnetic vortex and antivortex at the extremes. We argue that due to the interaction between segments a ferronematic state with macroscopic polarization is stabilized. This state can be characterized as a charge nematic which, due to the net polarization, breaks inversion symmetry and also exhibits an incommensurate spin modulation. Our calculation can reproduce the doping-dependent spin structure factor of lanthanum cuprates in excellent agreement with experiment and allows to rationalize experiments in which the incommensurability has an order-parameter-like temperature dependence. Y1 - 2013 UR - http://journals.aps.org/prb/abstract/10.1103/PhysRevB.87.035138 U6 - https://doi.org/10.1103/PhysRevB.87.035138 SN - 2469-9969 VL - 87 IS - 3 SP - 035138 ER - TY - GEN A1 - Seibold, Götz A1 - Di Castro, Carlo A1 - Grilli, Marco A1 - Lorenzana, José T1 - Spin excitations of ferronematic order in underdoped cuprate superconductors T2 - Scientific reports N2 - High-temperature superconductors exhibit a characteristic hourglass-shaped spectrum of magnetic fluctuations which most likely contribute to the pairing glue in the cuprates. Recent neutron scattering experiments in strongly underdoped compounds have revealed a significant low energy anisotropy of these fluctuations which we explain by a model in which topological defects of the antiferromagnet clump to producing domain wall segments with ferronematic order. This state does not invoke global charge order but breaks C4 rotational and inversion symmetry. The incommensurability of the low doping charge-disordered state is in good agreement with experiment and interpolates smoothly with the incommensurability of the stripe phase at higher doping. Within linear spin-wave theory the dynamic structure factor is in very good agreement with inelastic neutron scattering data and can account for the observed energy dependent anisotropy. Y1 - 2014 UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060504/ U6 - https://doi.org/10.1038/srep05319 SN - 2045-2322 IS - 4 SP - 5319 ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Fermi surface and photoemission lineshape of incommensurate CDW systems Y1 - 2000 ER - TY - CHAP A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco ED - Bianconi, Antonio ED - Saini, Naurang L. T1 - Domain wall structures in the two-dimensional Hubbard modelwith long-range Coulomb interaction T2 - Stripes and Related Phenomena Y1 - 2000 SN - 0-306-46419-5 U6 - https://doi.org/10.1007/0-306-47100-0_18 SP - 151 EP - 157 PB - Kluwer Academic Plenum CY - New York ER - TY - GEN A1 - Seibold, Götz A1 - Castellani, Claudio A1 - Di Castro, Carlo A1 - Grilli, Marco T1 - Striped phases in the two-dimensional Hubbard model with long-rangeCoulomb interaction Y1 - 1998 ER -