TY - GEN A1 - Kerstein, Alan R. A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Starick, Tommy A1 - Wheeler, Isaac A1 - Behrang, Masoomeh T1 - Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows T2 - 2021 AIChE Annual Meeting N2 - Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations. Y1 - 2021 UR - https://plan.core-apps.com/aiche2021/event/002309c77cf108fff1a6a8a101a07ebd ER - TY - GEN A1 - Starick, Tommy A1 - Behrang, Masoomeh A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Turbulent mixing simulation using the Hierarchical Parcel-Swapping (HiPS) model T2 - Technische Mechanik N2 - Turbulent mixing is an omnipresent phenomenon that permanently affects our everyday life. Mixing processes also plays an important role in many industrial applications. The full resolution of all relevant flow scales often poses a major challenge to the numerical simulation and requires a modeling of the small-scale effects. In transported Probability Density Function (PDF) methods, the simplified modeling of the molecular mixing is a known weak point. At this place, the Hierarchical Parcel-Swapping (HiPS) model developed by A.R. Kerstein [J. Stat. Phys. 153, 142-161 (2013)] represents a computationally efficient and novel turbulent mixing model. HiPS simulates the effects of turbulence on time-evolving, diffusive scalar fields. The interpretation of the diffusive scalar fields or a state space as a binary tree structure is an alternative approach compared to existing mixing models. The characteristic feature of HiPS is that every level of the tree corresponds to a specific length and time scale, which is based on turbulence inertial range scaling. The state variables only reside at the base of the tree and are understood as fluid parcels. The effects of turbulent advection are represented by stochastic swaps of sub-trees at rates determined by turbulent time scales associated with the sub-trees. The mixing of adjacent fluid parcels is done at rates consistent with the prevailing diffusion time scales. In this work, a standalone HiPS model formulation for the simulation of passive scalar mixing is detailed first. The generated scalar power spectra with forced turbulence shows the known scaling law of Kolmogorov turbulence. Furthermore, results for the PDF of the passive scalar, mean square displacement and scalar dissipation rate are shown and reveal a reasonable agreement with experimental findings. The described possibility to account for variable Schmidt number effects is an important next development step for the HiPS formulation. This enables the incorporation of differential diffusion, which represents an immense advantage compared to the established mixing models. Using a binary structure allows HiPS to satisfy a large number of criteria for a good mixing model. Considering the reduced order and associated computational efficiency, HiPS is an attractive mixing model, which can contribute to an improved representation of the molecular mixing in transported PDF methods. KW - differential diffusion KW - hierarchical parcel-swapping KW - HiPS KW - mixing model KW - scalar mixing Y1 - 2023 U6 - https://doi.org/10.24352/UB.OVGU-2023-044 SN - 0232-3869 VL - 43 IS - 1 SP - 49 EP - 58 ER - TY - GEN A1 - Starick, Tommy A1 - Behrang, Masoomeh A1 - Lignell, David O. A1 - Schmidt, Heiko A1 - Kerstein, Alan R. T1 - Turbulent mixing simulation using the Hierarchical Parcel Swapping (HiPS) model T2 - Proceedings of the Conference on Modelling Fluid Flow (CMFF’22) KW - differential diffusion, hierarchical parcel swapping, HiPS, mixing model, passive scalar mixing Y1 - 2022 UR - https://www.cmff.hu/papers/CMFF22_Final_Paper_PDF_96.pdf SN - 978-963-421-881-4 SP - 1 EP - 7 PB - Department of Fluid Mechanics, University of Technology and Economics CY - Budapest, Hungary ER -