TY - GEN A1 - Sieber, Tim A1 - Ducke, Jana A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - Recovery of Li(Ni0.33Mn0.33Co0.33)O2 from Lithium-Ion Battery Cathodes: Aspects of Degradation T2 - Nanomaterials N2 - Nickel–manganese–cobalt oxides, with LiNi0.33Mn0.33Co0.33O2 (NMC) as the most prominent compound, are state-of-the-art cathode materials for lithium-ion batteries in electric vehicles. The growing market for electro mobility has led to a growing global demand for Li, Co, Ni, and Mn, making spent lithium-ion batteries a valuable secondary resource. Going forward, energy- and resource-inefficient pyrometallurgical and hydrometallurgical recycling strategies must be avoided. We presented an approach to recover NMC particles from spent lithium-ion battery cathodes while preserving their chemical and morphological properties, with a minimal use of chemicals. The key task was the separation of the cathode coating layer consisting of NMC, an organic binder, and carbon black, from the Al substrate foil. This can be performed in water under strong agitation to support the slow detachment process. However, the contact of the NMC cathode with water leads to a release of Li+ ions and a fast increase in the pH. Unwanted side reactions may occur as the Al substrate foil starts to dissolve and Al(OH)3 precipitates on the NMC. These side reactions are avoided using pH-adjusted solutions with sufficiently high buffer capacities to separate the coating layer from the Al substrate, without precipitations and without degradation of the NMC particles. KW - lithium KW - nickel–manganese–cobalt oxide KW - NMC KW - leaching KW - recycling KW - SEM-EDX KW - Raman spectroscopy KW - lithium ion battery Y1 - 2019 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/charact_nano UR - https://www.mdpi.com/2079-4991/9/2/246 U6 - https://doi.org/10.3390/nano9020246 SN - 2079-4991 VL - 9 IS - 2 SP - 246 EP - 259 ER - TY - CHAP A1 - Rietig, Anja A1 - Acker, Jörg T1 - Ressourcensicherung durch Recycling von Sekundärrohstoffen T2 - Systemwissen für die vernetzte Energie- und Mobilitätswende KW - Lithiumbatterie KW - Funktionelles Recycling KW - Nickel-Mangan-Cobalt-Oxid KW - NMC KW - Raman-Spektroskopie KW - Laugung Y1 - 2019 SN - 978-3-9816861-7-3 SP - 170 EP - 181 PB - Vereinigung für Betriebliche Bildungsforschung e.V. CY - Berlin ET - 1. Auflage ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - A revised model of silicon oxidation during the dissolution of silicon in HF/HNO₃ mixtures T2 - Physical chemistry, chemical physics N2 - The stoichiometry of wet chemical etching of silicon in concentrated HF/HNO₃ mixtures was investigated. The formation of nitrogen species enriched in the etching mixture and their reactivity during the etching process was studied. The main focus of the investigations was the comprehensive quantification of the gaseous reaction products using mass spectrometry. Whereas previously it could only be speculated that nitrogen was a product, its formation was detected for the first time. The formation of hydrogen, N₂, N₂O and NH₄⁺ showed a dependence on the etching bath volume used, which indicates the formation of nitrogen compounds by side reactions. Simultaneously, the ratio of the nitrogen oxides, NO and NO₂, formed decreases with increasing etching bath volume, while nitric acid consumption increases, so that the formation of NO₂ could also be identified as a side reaction. Based on the stoichiometries obtained, a new reaction scheme for the reduction of nitric acid during etching in HF/HNO₃ mixtures and an electron balance for the oxidation of silicon is presented. KW - silicon KW - etching KW - mechanism KW - nitrogen oxide KW - hydrogen KW - mass spectrometry KW - Raman spectroscopy KW - kinetics Y1 - 2019 UR - https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP04429A#!divAbstract U6 - https://doi.org/10.1039/c9cp04429a SN - 1463-9076 VL - 21 SP - 22002 EP - 22013 ER - TY - GEN A1 - Sieber, Tim A1 - Rietig, Anja A1 - Ducke, Jana A1 - Acker, Jörg ED - Vogt, Carla T1 - Direkte Feststoffanalyse von Hauptkomponenten in Kathodenmaterialien von Lithiumbatterien mittels HRCS-GF-AAS T2 - Colloquium Analytische Atomspektroskopie - CANAS 2019, Book of Abstracts N2 - Zur Bestimmung der metallischen Hauptkomponenten in Lithium-Batterie-Kathodenmaterialien ist der nasschemische Aufschluss mit anschließender ICP-OES-Analyse oft das Mittel der Wahl. Da dieses Verfahren jedoch recht zeitaufwendig ist und den Einsatz starker Säuren erfordert, wurde eine Methode zur direkten Feststoffanalyse mittels HRCS-GF-AAS (high resolution continuum source graphit furnace atom absorption spectrometry) nach dem STPF-Konzept (stabilized temperature platform furnace) entwickelt. Die hohen Analytkonzentrationen erfordern dabei die Messung auf den vergleichsweise wenig intensiven Linien Li = 323,2657 nm, Ni = 294,3912 nm, Mn = 321,6945 nm und Co= 243,5823 nm. Zusätzlich wird das Probenmaterial einer Feststoffverdünnung mit matrixverwandten Komponenten unterzogen. Die Verdünnung senkt zum einen die Konzentration und die Gefahr der Verschleppung der Analyten und begünstigt zum anderen die Freigabe des Analyten aus der Probenmatrix. Durch Aufnahme von Extinktions-Zeit-Verläufen im Temperaturbereich von 200 - 2600 °C konnten die Freisetzungstemperaturen für jeden Analyten bestimmt werden. Nach anschließenden Optimierungen der Pyrolyse- und Atomisierungstemperaturen wurde mithilfe der Einzeloxide für jeden Analyten die Linearität des Messsignals geprüft und der Arbeitsbereich festgelegt. Durch Vermessung von variierenden Oxidmischungen und Mischoxiden, sowie Zusatz möglicher weiterer Interferenten, wie dem Bindermaterial PVDF wurden Spezifität, Selektivität und Robustheit der Methode überprüft. Abschließend erfolgte anhand realer Proben (Recyclinggut aus Lithium-Batterie-Kathoden) ein Vergleich zwischen den Ergebnissen der direkten Feststoffanalyse mittels HRCS-GF-AAS und dem bereits etablierten Verfahren der ICP-OES Analyse nach nasschemischem Aufschluss. Nach umfangreicher Methodenentwicklung kann ein Verfahren der direkten Feststoffanalyse von Recylinggut aus Kathodenmaterialien von Lithium-Ionen-Batterien mittels HRCS-GF-AAS bereitgestellt werden, das eine schnelle und präzise Analyse der Hauptkomponenten Li, Ni, Mn und Co erlaubt. KW - continuum source KW - AAS KW - Feststoffanalytik KW - Feststoffstandard KW - Graphitrohr KW - Interferenz KW - NMC KW - Recycling KW - Lithium KW - Batterie Y1 - 2019 UR - https://tu-freiberg.de/en/canas/canas-2019-engl/final-program VL - 2019 SP - S1/4 PB - TU Bergakademie Freiberg CY - Freiberg ET - 1. Auflage ER - TY - GEN A1 - Acker, Jörg A1 - Sieber, Tim A1 - Ducke, Jana A1 - Langner, Thomas A1 - Rietig, Anja T1 - Degradation effects on Li(Ni0.33Mn0.33Co0.33)O2 in the recovery of lithium battery cathodes T2 - Advanced Lithium Batteries for Automobile Applications - ABAA 12, Book of Abstracts N2 - The compound Li(Ni0.33Mn0.33Co0.33)O2 (NMC) is the state-of-the-art lithium-ion battery cathode material. Due to the increasing demand NMC is of crucial economically importance for the worldwide emerging market of electromobility. Recycling of end-of-life lithium-ion batteries to recover NMC, in particular of batteries from automotive vehicles, is one future strategy to save costs and to become more independent from the supply of the essential elements Co and Mn. Several concepts for NMC recycling from lithium-ion batteries are based on wet-chemical process steps, in particular, to separate the NMC containing cathode layer from the underlying metal foil. However, NMC is very sensitive against the attack by water and reagents that are added to promote the separation process. The present study deals with the wet-chemical recycling of NMC using aqueous reagent solutions in a under varying process conditions. The recovered NMC samples are characterized in order to study the ongoing degradation at the surface of the NMC particles. In particular, two major degradation pathways are identified: (i) a preferential loss of lithium and nickel and (ii) the formation of passivation layers due to unwanted side reactions. DRIFT measurements are performed to study the NMC surface species after the recovery processes. SEM/EDX mappings are used to detect changes in the chemical composition in the surface region of the chemically treated NMC particles. Finally, a detailed study of the changes in the chemical state at the NMC particle surface is done by Raman microscopy by means of the deconvolution of the recorded spectra into their A1G component (representing the metal-oxide phonons) and into the Eg component (representing the oxide-metal-oxide phonons). As result of this study, the consequences of different wet-chemical process conditions on the quality of the recovered NMC material are discussed. KW - lithium ion battery KW - recycling KW - NMC KW - electromobility KW - degradation KW - Raman spectroscopy KW - cathode Y1 - 2019 SP - 28 PB - Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg CY - Ulm ET - 1. Auflage ER -