TY - GEN A1 - Meinel, Birgit A1 - Koschwitz, Tim A1 - Heinemann, Robert A1 - Acker, Jörg T1 - The texturization process during horizontal acidic etching of multi-crystalline silicon wafers T2 - Materials Science in Semiconductor Processing N2 - Horizontal wet-chemical etching of silicon wafers in an HF/HNO3/H2SiF6 mixture is the most widely-used technique to texturize multi-crystalline silicon wafers for solar cell production. For the first time, the etch rates were determined separately for the upper and lower side during the horizontal texturization and the their different morphologies. The dependency of the surface morphology from the etch rate and etch depth is proven. Furthermore, the influence of the temperature and stirring rates on the morphological development for the upper and lower side of the wafer were examined. From temperature-dependent measurements, activation energies in the range from 17 kJ/mol to 40 kJ/mol on the upper side and from 23 kJ/mol to 40 kJ/mol on the lower side dependent from the etching time were determined. The observed results reveal a connection between the etch depth, the agitation of the etch solution, the morphology and the reflectivity of the separate wafer sides. KW - Acidic etching KW - Surface properties KW - Confocal microscopy KW - Reflectivity KW - Activation energy KW - silicon KW - HF/HNO3 mixture KW - solar cell Y1 - 2014 UR - http://www.sciencedirect.com/science/article/pii/S136980011400482X U6 - https://doi.org/10.1016/j.mssp.2014.08.047 SN - 1369-8001 VL - 26 SP - 695 EP - 703 ER - TY - GEN A1 - Bücker, Stefan A1 - Hoffmann, Volker A1 - Acker, Jörg T1 - Determination of Fluorine by Molecular Absorption Spectrometry of AlF Using a High-Resolution Continuum Source Spectrometer and a C2H2/N2O Flame T2 - Current Analytical Chemistry N2 - The molecular absorption of the diatomic AlF molecule in the C2H2/N2O flame was studied using a highresolution continuum source flame atomic absorption spectrometer. AlF has a structured absorption spectrum in the range of 227.30 nm and 227.80 nm. From this band system, the remarkably narrow absorption band at 227.66 nm proved to be the optimum for analytical purposes. The signal intensity was studied as a function of the C2H2 : N2O ratio, the aspiration flow, and the aluminum concentration added to the analytical solution to generate the AlF molecules in the flame. The AlF molecule formation is significantly affected by the bonding state of the fluorine source used. Compared to ionic bound fluorine, organic bound fluorine leads to a markedly less sensitive molecular absorbance of AlF. Furthermore, several ions, such as Na+, K+ and NH4+, and acids, such as HCl, CH3COOH, and HNO3, affect the AlF signal intensity severely. It has to be concluded that the determination of fluorine by AlF F MAS only leads to reliable analytical results in simple matrices. KW - AlF KW - fluorine determination KW - high resolution continuum source absorption spectrometry KW - molecular absorption spectrometry KW - non-spectral interference KW - diatomic molecule Y1 - 2014 SN - 1573-4110 SN - 1875-6727 VL - 10 IS - 3 SP - 426 EP - 434 ER - TY - CHAP A1 - Acker, Jörg A1 - Ducke, Jana A1 - Rietig, Anja A1 - Müller, Tim A1 - Eisert, Stefan A1 - Reichenbach, Birk A1 - Löser, Wolfgang ED - Oye, Harald A. ED - Brekken, Harald ED - Rong, Harry ED - Tangstad, Merete ED - Tveit, Halvard T1 - Segregation, grain boundary milling, and chemical leaching for the refinement of metallurgical-grade silicon for photovoltaic application T2 - Silicon for the Chemical and Solar Industry XII, Trondheim, 2014 N2 - The present work describes a completely new approach to the solidification refinement of metallurgical-grade silicon. The new process comprises the following steps: (i) The first step involves adding auxiliary metals to the molten silicon in order to segregate the metallic and non-metallic impurities in the secondary phase after cooling. (ii) The melt is rapidly cooled in the cellular solidification regime. This generates a Si microstructure with a defined cell size in which all cell boundaries are surrounded by the secondary phase. Furthermore, the secondary phase should form an interconnected three-dimensional network. (iii) The solids are crushed by shockwaves using electrohydraulic fragmentation techniques. The shockwaves lead to preferential crushing at the interface between the silicon and the secondary phase. (iv) The secondary phases are fast and effectively removed by microwave-assisted high-pressure leaching that was newly developed for this process. The potential of the new refinement procedure is demonstrated with auxiliary metals Ca, Al, and Ti. This new procedure yields a significant decrease in phosphorous and metal impurities. KW - silicon KW - leaching KW - hydrometallurgy KW - solar cell KW - segregation KW - etching Y1 - 2014 SN - 978-82-997357-8-0 SP - 177 EP - 188 PB - Department of Materials Science and Engineering, Norwegian University of Science and Technology CY - Trondheim ER - TY - CHAP A1 - Rietig, Anja A1 - Acker, Jörg ED - Nygaard, Lars ED - Pachaly, Bernd ED - Page, Ingrid Gamst ED - Rong, Harry ED - Tangstad, Merete ED - Tveit, Halvard T1 - A new and fast method for determination of boron, phosphorus and other trace elements in metallurgical grade silicon T2 - Silicon for the Chemical and Solar Industry XIII, Kristiansand, 2016 N2 - A new method for accurate and precise determination of non-metallic and metallic impurities in silicon was developed and statistically validated. The first step is the fast dissolution of silicon in a microwave-assisted high pressure system to minimize a loss of phosphorus. The essential innovation is the use of the concentrated digestion solution for ICP-OES measurements. This approach avoids the common removal of the silicon and acid matrix by volatilization, which can cause considerable losses of boron. Finally, for the ICP-OES measurements in such high-silicon matrices the optimum measuring conditions were determined and a careful selection of emission lines with respect to selectivity, spectral and non-spectral inferences and matrix effects was performed. The method of matrix matched calibration (MMC) is used for quantification of the impurities’ contents. For Al, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zr and P the validation was performed against certified reference materials (IPT134, IPT135, NIST57b). To validate the determination of boron 9 silicon samples of different boron contents from three interlaboratory comparisons were used. The new procedure allows the determination of impurities of 4N-silicon (12 elements) with high precision and accuracy. KW - silicon KW - ICP-OES KW - impurity KW - chemical analysis KW - boron KW - phosphorus Y1 - 2016 UR - https://www.ntnu.no/trykk/publikasjoner/Silicon%20for%20the%20chemical%20and%20solar%20industry%20XIII/ SP - 95 EP - 106 PB - Department of Materials Science and Engineering, Norwegian University of Science and Technology CY - Trondheim ER - TY - GEN A1 - Acker, Jörg A1 - Langner, Thomas A1 - Meinel, Birgit A1 - Sieber, Tim T1 - Saw Damage as an Etch Mask for the Acidic Texturization of Multicrystalline Silicon Wafers T2 - Materials Science in Semiconductor Processing N2 - The surface of multicrystalline silicon solar cells are etched by mixtures of HF, HNO3 and H2SiF6 in order to remove saw damage caused by wafer slicing, as well as to create a water surface topography that provides a low reflectance for incident light, otherwise known as the texture. Topographically analyzing wafer surfaces before and after etching has revealed that the saw damage controls the texturized wafer surface’s final topography.The first key factor is the dimension and magnitude of the plastic stress field introduced by indenting SiC grains into the wafer surface during the wafering process. The second key factor is that lattice-stressed silicon is etched at a higher rate than unstressed bulk silicon. At the wire entrance, side sharp and large SiC grains create the deepest indention pits, and therefore the deepest of the water surface stress fields. The lattice-disturbed silicon inside these pits is etched at a higher rate compared to the pit’s side walls, which are uniformly attacked across the wafer area. Consequentially, existing pits deepen, and these areas generate the wafer’s lowest reflectivity. At the wire exit side, a higher number of smaller and rounder SiC particles indent the surface and create more numerous and shallower indention pits compared to the wire entrance side. The resulting stress field is less deep, so less silicon is removed from inside of these pits during etching compared to the wire entrance side. This yields to a wafer surface region consisting of shallowly etched pits and higher reflectance. It is concluded that the saw damage acts like an etch mask in the texturization of multicrystalline silicon wafers. KW - silicon KW - texturization KW - acidic etching KW - multi-wire sawing KW - stress field KW - confocal microscopy KW - solar cell Y1 - 2018 UR - https://www.sciencedirect.com/science/article/pii/S1369800117313896 U6 - https://doi.org/10.1016/j.mssp.2017.09.039 SN - 1369-8001 VL - 74 SP - 238 EP - 248 ER - TY - GEN A1 - Sieber, Tim A1 - Ducke, Jana A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - Recovery of Li(Ni0.33Mn0.33Co0.33)O2 from Lithium-Ion Battery Cathodes: Aspects of Degradation T2 - Nanomaterials N2 - Nickel–manganese–cobalt oxides, with LiNi0.33Mn0.33Co0.33O2 (NMC) as the most prominent compound, are state-of-the-art cathode materials for lithium-ion batteries in electric vehicles. The growing market for electro mobility has led to a growing global demand for Li, Co, Ni, and Mn, making spent lithium-ion batteries a valuable secondary resource. Going forward, energy- and resource-inefficient pyrometallurgical and hydrometallurgical recycling strategies must be avoided. We presented an approach to recover NMC particles from spent lithium-ion battery cathodes while preserving their chemical and morphological properties, with a minimal use of chemicals. The key task was the separation of the cathode coating layer consisting of NMC, an organic binder, and carbon black, from the Al substrate foil. This can be performed in water under strong agitation to support the slow detachment process. However, the contact of the NMC cathode with water leads to a release of Li+ ions and a fast increase in the pH. Unwanted side reactions may occur as the Al substrate foil starts to dissolve and Al(OH)3 precipitates on the NMC. These side reactions are avoided using pH-adjusted solutions with sufficiently high buffer capacities to separate the coating layer from the Al substrate, without precipitations and without degradation of the NMC particles. KW - lithium KW - nickel–manganese–cobalt oxide KW - NMC KW - leaching KW - recycling KW - SEM-EDX KW - Raman spectroscopy KW - lithium ion battery Y1 - 2019 UR - https://www.mdpi.com/journal/nanomaterials/special_issues/charact_nano UR - https://www.mdpi.com/2079-4991/9/2/246 U6 - https://doi.org/10.3390/nano9020246 SN - 2079-4991 VL - 9 IS - 2 SP - 246 EP - 259 ER - TY - GEN A1 - Herold, Steven A1 - Acker, Jörg T1 - Measurement of the temperature dependence of lattice deformations in silicon using Raman microscopy T2 - Journal of Applied Physics N2 - The effect of heating and cooling in the range of 25–900 °C on the lattice deformations of diamond wire-sawn polycrystalline and scratched monocrystalline silicon surfaces was studied in detail using Raman microscopy. Mechanically treated silicon surfaces contain tensile or compressive strained silicon with varying deformation strength and areas with high-pressure silicon phases and amorphous silicon. It is shown that compressive deformed silicon relaxes after heating the sample to 600 °C, while tensile deformed silicon only relaxes after multiple heating and cooling cycles. Raman measurements during the heating and after the cooling phases reveal the individual thermal expansion and relaxation behavior of the deformed silicon states. Compressive deformed silicon relaxes during the heating phase, while tensile deformed silicon relaxes during the cooling phase. It is, therefore, possible to separately relax certain deformation states using thermal annealing without changing the topography of the surface. KW - Raman spectroscopy KW - mechanical stress KW - silicon KW - crystallization KW - relaxation KW - thermal treatment KW - solar cell Y1 - 2019 UR - https://aip.scitation.org/doi/10.1063/1.5090476 U6 - https://doi.org/10.1063/1.5090476 SN - 1089-7550 VL - 126 ER - TY - GEN A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg T1 - A revised model of silicon oxidation during the dissolution of silicon in HF/HNO₃ mixtures T2 - Physical chemistry, chemical physics N2 - The stoichiometry of wet chemical etching of silicon in concentrated HF/HNO₃ mixtures was investigated. The formation of nitrogen species enriched in the etching mixture and their reactivity during the etching process was studied. The main focus of the investigations was the comprehensive quantification of the gaseous reaction products using mass spectrometry. Whereas previously it could only be speculated that nitrogen was a product, its formation was detected for the first time. The formation of hydrogen, N₂, N₂O and NH₄⁺ showed a dependence on the etching bath volume used, which indicates the formation of nitrogen compounds by side reactions. Simultaneously, the ratio of the nitrogen oxides, NO and NO₂, formed decreases with increasing etching bath volume, while nitric acid consumption increases, so that the formation of NO₂ could also be identified as a side reaction. Based on the stoichiometries obtained, a new reaction scheme for the reduction of nitric acid during etching in HF/HNO₃ mixtures and an electron balance for the oxidation of silicon is presented. KW - silicon KW - etching KW - mechanism KW - nitrogen oxide KW - hydrogen KW - mass spectrometry KW - Raman spectroscopy KW - kinetics Y1 - 2019 UR - https://pubs.rsc.org/en/content/articlelanding/2019/CP/C9CP04429A#!divAbstract U6 - https://doi.org/10.1039/c9cp04429a SN - 1463-9076 VL - 21 SP - 22002 EP - 22013 ER - TY - GEN A1 - Ducke, Jana A1 - Acker, Jörg ED - Vogt, Carla T1 - Rückgewinnung von Platin, Palladium und Rhodium aus Autoabgaskatalysatoren: Bestimmung der Edelmetallgehalte im Eisensammler mittels ICP-OES T2 - Colloquium Analytische Atomspektroskopie - CANAS 2019, Book of Abstracts N2 - Fahrzeugkatalysatoren enthalten wertvolle Edelmetalle wie Platin (Pt), Palladium (Pd) und Rhodium (Rh), wodurch ausgediente und funktionsunfähige Katalysatoren zu einem begehrten Recyclinggut in einem hart umkämpften Marktsegment werden. Das häufigsten Aufbereitungsverfahren für Altkatalysatoren ist ein Schmelzprozess, in dem vorzerkleinerte Katalysatorfraktionen unter definierter Zugabe von Hilfsstoffen mit Kupfer als Kollektormetall aufgeschmolzen werden. Die Edelmetalle reichern sich im flüssigen Kupfer an, während alle anderen metallischen und nichtmetallischen Bestandteile eine oxidische Schlacke bilden. Ein Recyclingunternehmen im Bundesland Brandenburg hat diesen Prozess innovativ weiterentwickelt, indem es Eisen als Sammlermetall einsetzt. Eisen ist nicht nur preisgünstiger als Kupfer, es kann unter optimalen Schmelzbedingungen bis zu 9% an Edelmetallen aufnehmen, während Kupfer eine maximale Aufnahme von nur 5% besitzt. Zur Bestimmung der Edelmetallgehalte wird in diese Branche die Kupfer-Dokimasi mit anschließender ICP-OES-Analyse angewandt, was im Falle des Eisensammlers ein Umschmelzen der Proben zur Folge hätte. Eine Methode zur präzisen Quantifizierung der Edelmetallgehalte im Eisensammler existierte bisher nicht. Im Rahmen eines Forschungsprojektes wurde deshalb ein Bestimmungsverfahren zur zuverlässigen Bestimmung von Pt, Pd und Rh in einem Bereich von 0,1% bis 5% neben einem Eisengehalt von mehr als 80% mittels ICP-OES nach einem MW-Aufschluss entwickelt, dessen Vorteil sich neben einer deutlichen Zeitersparnis auch bezüglich des Einsatzes an Probenmaterial (für den Aufschluss) und Aufschlusschemikalien zeigt. Die analytischen Herausforderungen lagen in der Probenhomogenisierung zur repräsentativen Probenahme, in der Entwicklung eines Mikrowellen-Aufschlussverfahrens und in der Entwicklung einer Methode zur Präzisionsanalytik mittels ICP-OES. Besonderes Augenmerk wurde auf die Identifizierung von spektralen und nichtspektralen Interferenzen gelegt, die durch variierende Gehalte von Nebenkomponenten der Altkatalysatoren und durch das linienreiche Emissionsspektrum der Hauptkomponente Eisen verursacht werden. Es gelang ein zuverlässiges, präzises und kosteneffizientes Quantifizierungsverfahren für diese Edelmetalle in dieser besonderen Matrix zu entwickeln. KW - ICP-OES KW - Präzisionsanalytik KW - Mikrowellenaufschluss KW - Matrixeffekte KW - Platin KW - Eisen KW - Interferenzen KW - Palladium KW - Rhodium Y1 - 2019 UR - https://tu-freiberg.de/canas SP - S3/2 PB - TU Bergakademie Freiberg CY - Freiberg ET - 1. Auflage ER - TY - GEN A1 - Sieber, Tim A1 - Rietig, Anja A1 - Ducke, Jana A1 - Acker, Jörg ED - Vogt, Carla T1 - Direkte Feststoffanalyse von Hauptkomponenten in Kathodenmaterialien von Lithiumbatterien mittels HRCS-GF-AAS T2 - Colloquium Analytische Atomspektroskopie - CANAS 2019, Book of Abstracts N2 - Zur Bestimmung der metallischen Hauptkomponenten in Lithium-Batterie-Kathodenmaterialien ist der nasschemische Aufschluss mit anschließender ICP-OES-Analyse oft das Mittel der Wahl. Da dieses Verfahren jedoch recht zeitaufwendig ist und den Einsatz starker Säuren erfordert, wurde eine Methode zur direkten Feststoffanalyse mittels HRCS-GF-AAS (high resolution continuum source graphit furnace atom absorption spectrometry) nach dem STPF-Konzept (stabilized temperature platform furnace) entwickelt. Die hohen Analytkonzentrationen erfordern dabei die Messung auf den vergleichsweise wenig intensiven Linien Li = 323,2657 nm, Ni = 294,3912 nm, Mn = 321,6945 nm und Co= 243,5823 nm. Zusätzlich wird das Probenmaterial einer Feststoffverdünnung mit matrixverwandten Komponenten unterzogen. Die Verdünnung senkt zum einen die Konzentration und die Gefahr der Verschleppung der Analyten und begünstigt zum anderen die Freigabe des Analyten aus der Probenmatrix. Durch Aufnahme von Extinktions-Zeit-Verläufen im Temperaturbereich von 200 - 2600 °C konnten die Freisetzungstemperaturen für jeden Analyten bestimmt werden. Nach anschließenden Optimierungen der Pyrolyse- und Atomisierungstemperaturen wurde mithilfe der Einzeloxide für jeden Analyten die Linearität des Messsignals geprüft und der Arbeitsbereich festgelegt. Durch Vermessung von variierenden Oxidmischungen und Mischoxiden, sowie Zusatz möglicher weiterer Interferenten, wie dem Bindermaterial PVDF wurden Spezifität, Selektivität und Robustheit der Methode überprüft. Abschließend erfolgte anhand realer Proben (Recyclinggut aus Lithium-Batterie-Kathoden) ein Vergleich zwischen den Ergebnissen der direkten Feststoffanalyse mittels HRCS-GF-AAS und dem bereits etablierten Verfahren der ICP-OES Analyse nach nasschemischem Aufschluss. Nach umfangreicher Methodenentwicklung kann ein Verfahren der direkten Feststoffanalyse von Recylinggut aus Kathodenmaterialien von Lithium-Ionen-Batterien mittels HRCS-GF-AAS bereitgestellt werden, das eine schnelle und präzise Analyse der Hauptkomponenten Li, Ni, Mn und Co erlaubt. KW - continuum source KW - AAS KW - Feststoffanalytik KW - Feststoffstandard KW - Graphitrohr KW - Interferenz KW - NMC KW - Recycling KW - Lithium KW - Batterie Y1 - 2019 UR - https://tu-freiberg.de/en/canas/canas-2019-engl/final-program VL - 2019 SP - S1/4 PB - TU Bergakademie Freiberg CY - Freiberg ET - 1. Auflage ER - TY - GEN A1 - Langner, Thomas A1 - Rietig, Anja A1 - Acker, Jörg T1 - Raman spectroscopic determination of the degree of dissociation of nitric acid in binary and ternary mixtures with HF and H2SiF6 T2 - Journal of Raman Spectroscopy N2 - The oxidizing effect of nitric acid in aqueous solutions depends on the concentration of undissociated nitric acid. This makes the concentration of undissociated nitric acid an essential parameter to monitor and control the quality of silicon etching in the industrial manufacturing of solar cells. In the present study, a method known already is extended in such a way that the degree of dissociation of nitric acid can be determined by Raman spectroscopy in HF/HNO3/H2SiF6 acid mixtures over a broad concentration range for the first time and without using an internal or external standard to compensate the typical time‐dependent drift of a Raman spectrometer. The method developed requires the calculation of a peak area ratio from the areas of the unimpeded Raman signals assigned to nitrate (νN − O) at 1,048 cm−1 and to undissociated HNO3 (νN − OH) at 957 cm−1. The correlation between the peak ratio and the degree of dissociation of nitric acid revealed can be described by a simple empirical equation. Using this equation, the degree of dissociation of nitric acid can be determined over a broad concentration range in binary and ternary mixtures of HNO3 with HF and H2SiF6. The impact of the acids HF and H2SiF6 and the total water content in the degree of dissociation of nitric acid is discussed. KW - Raman spectroscopy KW - nitric acid KW - dissociation KW - hexafluosilicic acid KW - hydrofluoric acid KW - silicon KW - etching Y1 - 2020 U6 - https://doi.org/10.1002/jrs.5769 VL - 51 IS - 2 SP - 366 EP - 372 ER - TY - GEN A1 - Markowski, Jens A1 - Acker, Jörg A1 - Ducke, Jana A1 - Schelter, Matthias T1 - Recovery and secondary use of Nickel-Manganese-Cobalt-Material from Cathodes of electric car traction batteries T2 - 59th Annual Conference of Metallurgists : emerging technologies in materials and metallurgical industries : COM 2020 N2 - Automotive technology is increasingly determined by electric vehicles driven by high-performance lithium ion batteries (LIB). Li-ion batteries equipped with layered oxide cathodes, which are constituted by oxides of nickel, manganese and cobalt, are proven as storage devices that combine high electrical power, high cycling stability and compact dimensions. These batteries contain large amount of valuable elements, such as the cathodes consisting of cobalt and nickel, the electrode carrier foils consisting of copper and aluminium. Therefore, spent LIB’s are valuable secondary resources. Thermal processing as the classical recycling-technology for LIB’s is energy-intensive and allow only a partial recovery of some value elements. Scientists of the Brandenburg University of Technology (Germany) developed in collaboration with industrial partners (SME) a process, in which the complex system LIB is partly automated dismounted into its basic components. The core of this process is the separation of anodes and cathodes from each other and an almost complete recovery of the cathode material from the foil. The recovered cathode material has an enormous potential for a re-use in new LIB’s. By a proper combination of separation and post-treatment the material has a quality that is close to virgin cathode material. Preliminary studies made on LIB’s containing a fraction of recycled cathode material up to 50% show an electrical performance comparable to LIB’s made from virgin material. KW - Lithium-Ionen-Battery KW - NMC-Re-use Y1 - 2020 SN - 978-1-926872-47-6 VL - 2020 PB - Canadian Institute of Mining, Metallurgy and Petroleum ER - TY - GEN A1 - Hünger, Klaus-Jürgen A1 - Danneberg, Matti A1 - Herold, Steven A1 - Acker, Jörg T1 - Stress conditions in quartzite and their quantification by Raman spectroscopy T2 - Proceedings of the 16th International Conference on Alkali-Aggregate Reaction in Concrete N2 - The silica solubility of aggregates is one of the most important components of the alkali-silica reaction. It is a surface-controlled process that always still requires more detailed studies to better understand the reaction mechanism. Since strained quartz releases more SiO2 into the pore solution, the properties of grains, crystals and their structure can should be directly quantified. In other work, various possibilities were tested for this purpose in order to obtain analyses of the surface and to correlate these with the mortar bar tests, for example. However, a quantifiable direct measurement of quartz crystal states with satisfactory results has not yet been performed. In this thesis polarization and reflected light microscopy in combination with Raman and confocal microscopy is used to obtain quantifiable data by direct measurement of the strained crystals. First measurements show new surprising signals besides the Raman main peak of the quartz. Such signals cannot be found on the whole sample, but only at places where strains are expected, e.g. at contact zones between different quartz crystals or cracks and sometimes inside of quartz grains too. Thus, a method may have been found to quantify the strained state of different quartz crystals in natural quartzite rocks. KW - ASR; quartzite; Raman microscopy; surface analysis Y1 - 2021 SN - 978-972-49-2315-4 SP - 185 EP - 192 PB - LNEC ER - TY - GEN A1 - Rietig, Anja A1 - Acker, Jörg T1 - Kinetic studies on acidic wet chemical etching of silicon in binary and ternary mixtures of HF, HNO3 and H2SiF6 T2 - Physical Chemistry Chemical Physics Y1 - 2023 U6 - https://doi.org/10.1039/d3cp03188h SN - 1463-9084 SN - 1463-9076 VL - 25 IS - 38 SP - 26245 EP - 26257 ER - TY - CHAP A1 - Hünger, Klaus-Jürgen A1 - Acker, Jörg A1 - Danneberg, Matti A1 - Herold, Steven T1 - Quantification of stress states in quartzite surfaces by using RAMAN spectroscopy T2 - 27th Annual Conference of the German Crystallographic Society / Zeitschrift für Kristallographie. Supplement Y1 - 2019 SN - 978-3-11-065403-5 SN - 0930-486X VL - 39 SP - S. 122 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Acker, Jörg A1 - Langner, Thomas A1 - Koschwitz, Tim ED - Marciniec, Bogdan T1 - Lattice-strain induced chemical reactivity of silicon T2 - 8th European Silicon Days 2018, Conference Proceedings N2 - Silicon wafer for solar application are produced by multi-wire sawing from 12x12 cm2 silicon bricks. After slicing the wafer surface consists of a several micrometer surface layer of very heterogeneous constitution, the so called saw damage. The topmost layer of the saw damage consists of debris, amorphous silicon and high-pressure silicon phases followed by a very defect-rich and lattice-strained region of fractures, cracks, and rifts caused by the rupture of the silicon lattice during the slicing process [1,2]. Such a damaged surface exhibits very poor semiconductor properties; therefore the saw damage is removed by chemical etching using mixtures of HF, HNO3 and H2SiF6 in order to produce solar cells. Recent investigations showed that the etching of the saw damage is a very heterogeneous process [3-5]. The surface consists of spots at which the etching forms very rapidly deep grooves while other spots remain unetched over a considerably long time. Some of the rapidly formed grooves seem to remain their shape while others grow because of an attack of the side walls, however, without making these grooves significantly deeper. So far there is no explanation for this behavior. The present work is the first study about the locally resolved etching behavior of lattice-strained silicon. The surface of polished single-crystal wafers were scratched with a diamond tip under defined conditions. By means of confocal Raman microscopy the local state of the silicon lattice in and nearby the scratches were characterized in terms of compression and tensile stress with a lateral resolution of 2 μm. Then, the scratches were etched stepwise using HF-HNO3-H2SiF6 mixtures and measured by confocal microscopy to quantify the local removal of silicon and measured by confocal Raman microscopy to monitor the lattice state. For the first time this study reveals and quantifies the impact of tensile and compressive lattice stress on the etch rate of silicon with the major outcome, that stress leads to a significantly anisotropic etching behavior. From the time dependent development of the scratch profiles and the topography of the surrounding wafer areas a detailed picture about the formation of highly reactive species and etching behavior against unstrained silicon is deduced. KW - silicon KW - lattice strain KW - reactivity KW - etching KW - Raman microscopy KW - confocal microscopy Y1 - 2016 SP - S. 124 PB - Wielkopolska Centre for Advanced Technologies, Adam Mickiewicz University CY - Poznań, Poland ER - TY - CHAP A1 - Schönekerl, Stefan A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Behavior of electroless copper deposition onto multi-crystalline silicon in diluted hydrofluoric acid solutions T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - The metal-assisted etching of Si is a method which has been studied for many years with regard to the creation of nanoscale surface structures, but much less research was done to elucidate the reaction processes. Most publications argue that either reduction of the metal cation could result in double charge transfer with concomitant hydrogen release or four-fold charge transfer without H2 formation [1]. Following, SiO2 is to be formed, which is subsequently converted into H2SiF6 by F-, HF2- or HF [2]. Due to the few reliable findings, own experiments were carried out. In this context, the deposition of Cu on multi-crystalline Si at various Cu2+ activities and different HF levels was investigated, and the H2 emission for these processes analysed. The results of the series of experiments indicate a different reaction behavior from the theory described above. Apparently, a slightly higher redox potential of the Cu2+/Cu+ half-cell compared to 2H+/H2 redox couple is sufficient to initiate the silicon dissolution process. The stoichiometric ratio between Cu deposition and Si dissolution process is strongly affected by the Cu2+ activity, but it is obviously not influenced by HF activity. At Cu2+ activities of < 2∙10-5 mol/kg less than one electron is nominally exchanged between metal cation and Si, and at activities of approx. 1∙10-2 mol/kg there is an almost four electron charge transfer. At activities > 1∙10-2 mol/kg the stoichiometric ratio and the Cu deposition and Si dissolution kinetics decrease, presumably due to the fact the compact Cu layer inhibits the transition of the dissolved Si into the etching solution. The shift in the stoichiometric ratio suggests the first Cu2+ based oxidative attack on Si enables the reaction of a further oxidizing agent. It is likely water will attack the silicon as second oxidant, since there is no dependence between the content of HF species in the etching solutions and the Si dissolution kinetics. This second reaction step seems to be associated with hydrogen evolution. The amount of hydrogen formation indicates that at a Cu2+ activity of < 2∙10-5 mol/kg calculative only one electron is transferred from Si to Cu2+ and H+, and at a Cu2+ activity of 1∙10-2 mol/kg four electrons in total. However, HF is necessary to convert the oxidized Si to the supposed formation of H3SiF, H2SiF2, HSiF3, and SiF4 and H2SiF6 respectively. KW - silicon KW - metal assisted etching KW - deposition KW - copper KW - dissolution Y1 - 2018 SP - S. 82 PB - Universität des Saarlandes CY - Saarbrücken ER - TY - CHAP A1 - Langner, Thomas A1 - Sieber, Tim A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Lattice strain controls the etching of solar wafer surfaces T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - Multi-wire sawing using an abrasive SiC slurry or diamond wires constitutes the main slicing techniques for multi- and monocrystalline silicon crystals in photovoltaics. The massive mechanical load during the sawing process creates a wafer surface layer characterized by lattice defects, pits, fractures, rifts, cracks, amorphous Si and even some high-pressure Si modifications, otherwise known as saw damage.[1] This highly defect-rich surface causes the rapid recombination of electron-hole pairs, requiring that it be removed by etching in order to manufacture solar cells and to generate a surface morphology having a low reflectivity which directly affects the solar cell’s efficiency. However, etching of the saw damage features of a heterogeneous and laterally unevenly distributed etch attack and a significantly higher etch rate compared to the underlying bulk silicon.[2,3] The present study is focused on the question of how mechanically introduced lattice strain in single-crystalline silicon alters the chemical reactivity of the silicon atoms affected by the strain field on a microscopic length scale. The magnitude and local distribution of lattice strain were extracted from confocal Raman microscopy measurements according to Ref. 4. One of the parameters used to describe the reactivity of silicon is the local etch rate, which was derived from the local removal before and after etching by confocal microscopy. Wet-chemical etching was performed with HF-HNO3-H2SiF6 acid mixtures of different concentrations. It was found, that the reactivity of silicon increased linearly with the magnitude of lattice strain. In particular, an increase in tensile strain led to a higher increase in reactivity compared to the increase observed with growing compressive strain. The second decisive parameter is the reactivity of the etch mixture. Diluted acid mixtures with a low reactivity attack only the highest strained Si, whereas more concentrated and therefore more reactive acid mixtures are able to attack even slightly strained Si. Side effects, such as the behavior of amorphous or nanocrystalline Si and the generation of highly reactive intermediary species while etching, are discussed. KW - Raman spectroscopy KW - silicon KW - lattice strain KW - etching KW - confocal microscopy Y1 - 2018 SP - S. 201 PB - Universität des Saarlandes CY - Saarbrücken ER - TY - CHAP A1 - Rietig, Anja A1 - Langner, Thomas A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Dissolution of silicon in HF/HNO3 mixtures: A revised model T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - The dissolution of Si in HF/HNO3 consists of a set of complex reactions and thus a large number of reaction products. The most comprehensive picture of this reaction, the role of the involved reaction products and the reactivity of the HF/HNO3 mixtures depending on their composition is drawn by Steinert et al..[1]-[3] Based on the first systematic investigations on hydrogen formation by Hoffmann et al.[4], Acker et al. succeeded a first mass and electron balance for the reaction of silicon in HF/HNO3.[5] However, there is still a lack in interpretation of the mass end electron balances arising from several nitrous oxides. So far, the identified nitrogen oxides NO, NO2 and N2O were considered in sum[5] and neither separated nor individually studied or quantified. The aim of this work is to complete the mass and electron balance by the contribution of the individual nitrous oxides and to identify their individual formation pathways. Kinetic measurements of the NO and NO2 formation during the dissolution of Si, NO2 turns out as a result from the oxidation of the primary product NO by the HNO3 in the etching mixtures. Subsequently, NO and NO2 react to N2O3 dissolved in the acid mixture. The kinetics of both reactions were individually studied by bubbling NO in HF/HNO3 mixtures of different composition. The already identified intermediary species N4O62+ turns out to be formed by disproportionation of dissolved NO2 via N2O4 without dissolution of silicon. A detailed kinetic studied showed, that only dissolved N2O3 and not the intermediate N4O62+ contribute to the dissolution rate of silicon in HF/HNO3 acid mixtures. Finally, kinetic measurements revealed that the formed H2 reduces gaseous NO yielding to the final gaseous reaction products N2, N2O as well as to ammonium ions which all are formed with identical reaction rate. This reaction is assumed to proceed via NH2OH as intermediate. As result of the identification and quantification of intermediary and final reaction products a new reaction scheme needs to be established leading to a new approach to the mass and electron balance for the oxidation of silicon during the dissolution in HF/HNO3 mixtures. KW - silicon KW - etching KW - Raman spectroscopy KW - mass spectrometry KW - gas analysis KW - reaction mechanism Y1 - 2018 SP - S. 199 PB - Universität des Saarlandes CY - Saarbrücken ER - TY - CHAP A1 - Meißner, André A1 - Acker, Jörg ED - Scheschkewitz, David ED - Kickelbick, Guido T1 - Raman spectroscopic study on the formation of Cu3Si T2 - 9th European Silicon Days, 9-12 September 2018, Saarbrücken, Germany, Book of abstracts N2 - The term “direct synthesis” is defined in the literature as the reactions between silicon and methyl chloride, hydrogen chloride and other reagents like chlorobenzene and ethyl chloride to yield various alkyl- or aryl substituted chlorosilanes.[1] These reactions have two features in common: (1) The reactivity of silicon - in terms of reaction start temperature, reaction rate and silane product distribution - is originated and controlled by the interaction with metals. (2) The reaction is fully under kinetic control since the formed silanes are the thermodynamically least stable products in the system Si-H-Cl-C.[2] Several authors consider Cu3Si as the catalytically active phase in the direct synthesis. It is assumed, that CuCl formed under the conditions of the direct synthesis reacts with Si according to Eq. 1 and 2 to yield Cu3Si.[1] (1) and (2) The present work describes a Raman microscopic study of the reaction of Si with Cu and CuCl with special emphasize given to the identification of the Cu3Si phase and the processes occurring in the surrounding bulk Si. There is one pathway in which a solid state reaction[3] between Si and CuCl leads to a massive nucleation of Cu3Si exactly at the position of the Si/CuCl solid-solid interface. The nucleation of Cu3Si creates such an enormous lattice strain so that several high-pressure modifications of Si can be identified at the reaction site and around. The second reaction pathway is controlled by a gas phase transport of CuCl at low temperatures. This transport pathway leads to a spread of Cu in nearest neighborhood close to the CuCl particles as well to a long range transport leading to a nucleation of microscopic Cu3Si precipitates away from the CuCl particles. Further studies on the reactivity of the Cu3Si containing reaction sites were performed and will be discussed in the presentation. KW - Raman spectroscopy KW - silicon KW - lattice strain KW - copper silicide KW - direct synthesis Y1 - 2018 PB - Universität des Saarlandes CY - Saarbrücken ER -