TY - CHAP A1 - Obrosov, Aleksei A1 - Kashkarov, Egor B. A1 - Weiß, Sabine A1 - Volinsky, Alex A. ED - Tiwari, Ashutosh T1 - Mechanical and tribological behaviour of hydrogenated CrxN coatings deposited at different pressure and voltages on IN718 T2 - American Advanced Materials Congress 2016 N2 - Hydrogen degradation is a serious problem in industrial applications like power plants (boilers, turbines), marine structures, car and aircraft components, as it leads to failures as well as to deterioration of properties. Inconel 718 is one of the most commonly used materials for these applications. Different metal nitrides like TiN coatings have been deposited in past to prevent hydrogen degradation, which are also known for their high hardness and good wear resistance [1, 2]. However, reports on hydrogen degradation of CrN coatings, which shows better oxidation and corrosion resistance, higher temperature stability and lower friction coefficient than TiN [3, 4] has not been reported till now. Despite a lot of publications about CrN films, up to now the effect of hydrogenation on mechanical and tribological properties of CrN coatings is still not completely understood. In the current work CrxN coatings were deposited by Direct Current Magnetron Sputtering (dcMS) on Inconel 718 substrate at different chamber pressures and substrate voltages. Substrate voltage is one of the most important process parameters which determines the structure of the coating and the adhesion between substrate and coating. Simultaneously a study of the chamber pressure is also needed to understand the deposited structure and growth rate because at higher pressures the high number of argon atoms reduce the number of ionized ions available for the deposition leading to low deposition rates [5]. Gas-phase hydrogenation of the samples was performed at a temperature of 600° C and hydrogen pressure of 2 atm. It was found that CrxN coatings are resistant against hydrogen exposure as compared to uncoated surfaces. The results of changes in the mechanical, tribological properties and phase composition of the coatings after hydrogenation are discussed. Coating microstructure was studied by scanning electron microscopy (SEM). The mechanical properties of the coatings were characterized by means of nanoindentation and scratch test. KW - CrxN coating KW - mechanical properties KW - microstructure KW - hydrogenation KW - XRD Y1 - 2016 SN - 978-91-88252-03-6 PB - VBRI Press CY - Linköping ER - TY - CHAP A1 - Bambach, Markus A1 - Sizova, Irina A1 - Bolz, Sebastian A1 - Weiß, Sabine T1 - Development of a dynamic recrystallization model for a β-solidifying titanium aluminide alloy using Kocks-Mecking plots T2 - ESAFORM 2016, proceedings of the 19th International ESAFORM Conference on Material Forming, Nantes, France, 27-29 April 2016 Y1 - 2016 SN - 978-0-7354-1427-3 U6 - https://doi.org/10.1063/1.4963545 SP - 160002-1 EP - 160002-7 PB - AIP Publishing CY - Melville, New York ER -