TY - GEN A1 - Stendal, Johan Andreas A1 - Eisentraut, Mark A1 - Sizova, Irina A1 - Bolz, Sebastian A1 - Weiß, Sabine A1 - Bambach, Markus T1 - Accelerated hot deformation and heat treatment of the TiAl alloy TNM-B1 for enhanced hot workability and controlled damage T2 - Journal of Materials Processing Technology Y1 - 2021 U6 - https://doi.org/10.1016/j.jmatprotec.2020.116999 SN - 0924-0136 VL - Vol. 291 ER - TY - GEN A1 - Grudinin, V. A. A1 - Sidelev, D. V. A1 - Bleykher, G. A. A1 - Yuriev, Yu N. A1 - Krivobokov, V. P. A1 - Berlin, E. V. A1 - Grigoriev, V. Yu A1 - Obrosov, Aleksei A1 - Weiß, Sabine T1 - Hot target magnetron sputtering enhanced by RF-ICP source for CrNx coatings deposition T2 - Vacuum N2 - This article describes hot Cr target magnetron sputtering enhanced by a radio-frequency inductively coupled plasma (RF-ICP) source in an Ar + N2 atmosphere. Optical emission spectroscopy revealed an opportunity to perform magnetron sputtering in an inert (Ar) atmosphere, while the CrNx coating can be deposited on a substrate in a chemically reactive atmosphere formed by the RF-ICP source. High stability and repeatability of deposition process were observed, and the deposition rate of the CrNx coatings increased from 106 to 127 nm/min as N2 flow rate rose. The power of the RF-ICP source and the N2 flow rate can be used to tailor and control deposition conditions. The XRD and WDS measurements showed the effect of deposition conditions on the crystal structure and elemental composition of CrNx coatings. It was found that the change of substrate bias, RF-ICP source power and N2 flow rate result in variation of coating stoichiometry from pure Cr to CrN. KW - CrN coatings KW - Hot target KW - Magnetron sputtering KW - High-rate deposition KW - RF inductively Coupled plasma Y1 - 2021 UR - https://www.sciencedirect.com/science/article/pii/S0042207X21003523?via%3Dihub#! U6 - https://doi.org/10.1016/j.vacuum.2021.110400 SN - 0042-207X VL - 191 ER - TY - GEN A1 - Morozova, Iuliia A1 - Obrosov, Aleksei A1 - Naumov, Anton A1 - Królicka, Aleksandra A1 - Golubev, Iurii A1 - Bokov, Dmitry O. A1 - Doynov, Nikolay A1 - Weiß, Sabine A1 - Michailov, Vesselin T1 - Impact of Impulses on Microstructural Evolution and Mechanical Performance of Al-Mg-Si Alloy Joined by Impulse Friction Stir Welding T2 - Materials N2 - Impulse Friction Stir Welding (IFSW) was utilized to join 6082–T6 alloy plates at various impulse frequencies. A distinctive feature of IFSW is the generation of mechanical impulses that enhances the forging action of the tool, and thereby, alters the weld microstructure. The microstructural evolution in the Stir Zone (SZ) with special focus on the strengthening precipitation behavior, and overall mechanical properties of the IFSW joints have been investigated. It was demonstrated that the strengthening β″ precipitates reprecipitated in the SZ of the IFSW joints during natural aging. In contrast, no precipitates were found in the SZ of the Friction Stir Welding (FSW) weld. Partial reversion of β″ after IFSW is supposed to occur due to more developed subgrain network and higher dislocation density introduced by impulses that accelerated precipitation kinetics. Dynamic recrystallisation was facilitated by impulses resulting in a fine, homogeneous structure. There was no significant difference between the microhardness in the SZ, tensile and yield strength of the FSW and IFSW joints. However, the application of impulses demonstrated the smoothing of the hardness reduction in the transition region at the advancing side. The shift of the fracture location from the Heat-Affected Zone (HAZ) by FSW to the SZ as well as higher elongation of the joints by IFSW of lower frequencies could be related to the grain refinement and the change of the grain orientation. KW - Al-Mg-Si alloy KW - impulse friction stir welding (IFSW) KW - precipitation KW - microstructure evolution KW - mechanical properties Y1 - 2021 UR - https://www.mdpi.com/1996-1944/14/2/347/htm U6 - https://doi.org/https://doi.org/10.3390/ma14020347 SN - 1996-1944 VL - 14 IS - 2 ER - TY - GEN A1 - Biedunkiewicz, Anna A1 - Figiel, Paweł A1 - Garbiec, Dariusz A1 - Obrosov, Aleksei A1 - Pawlyta, Mirosława A1 - Biedunkiewicz, Witold A1 - Pruss, Przemysław A1 - Rokosz, Krzysztof A1 - Wróbel, Rafał A1 - Raaen, Steinar A1 - Weiß, Sabine A1 - Bokov, Dmitry O. T1 - Influence of Elemental Carbon (EC) Coating Covering nc-(Ti,Mo)C Particles on the Microstructure and Properties of Titanium Matrix Composites Prepared by Reactive Spark Plasma Sintering T2 - Materials N2 - This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young’s modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. KW - nanocomposites KW - TiMMCs KW - spark plasma sintering KW - (Ti,Mo)C/C KW - EBSD KW - fracture toughness Y1 - 2021 UR - https://www.mdpi.com/1996-1944/14/1/231 U6 - https://doi.org/https://doi.org/10.3390/ma14010231 SN - 1996-1944 VL - 14 IS - 1 ER - TY - GEN A1 - Aissani, Linda A1 - Fellah, Mamoun A1 - Chadli, Abdel Hakim A1 - Samad, Mohammed Abdul A1 - Cheriet, Abderrahmane A1 - Salhi, Faiza A1 - Nouveau, Corinne A1 - Weiß, Sabine A1 - Obrosov, Aleksei A1 - Alhussein, Akram T1 - Investigating the effect of nitrogen on the structural and tribo-mechanical behavior of vanadium nitride thin films deposited using R.F. magnetron sputtering T2 - Journal of Materials Science N2 - Magnetron sputtering is one of the most commonly used deposition techniques, which has received considerable attention in industrial applications. In particular, owing to its compatibility with conventional fabrication processes, it can produce and fabricate high-quality dense thin films of a wide range of materials. In the present study, nitrogen (N) was combined with pure vanadium in order to form binary nitride to improve its mechanical and tribological performance. To evaluate the influence of nitrogen on the structure of the as-deposited vanadium nitride (VN) coatings, the following techniques were used: XPS, XRD, SEM, AFM and optical profilometry. The residual stresses were determined by the curvature method using Stoney’s formula. The hardness and Young’s modulus were obtained by nanoindentation measurements. The friction behavior and wear characteristics of the films were evaluated by using a ball-on-disk tribometer. The obtained results showed that the N/V ratio increased with increasing the N2 flow rate while the deposition rate decreased. The preferred orientation was changed from (200) to (111) as the N2 flow rate increased with the presence of V–N and V–O binding energies as confirmed by XPS analysis. The nitrogen addition resulted in a columnar morphology and a fine structure with fine surface roughness. The VN thin film containing 49.5 at.% of nitrogen showed the best performance: highest mechanical properties (hardness = 25 GPa), lowest friction coefficient (μ = 0.37) and lowest wear rate (Ws = 2.72 × 10−5 mm3N−1 m−1). A good correlation between the film microstructure, crystallite size, residual stress and mechanical and tribological properties was observed. Y1 - 2021 U6 - https://doi.org/10.1007/s10853-021-06393-0 SN - 1573-4803 SN - 0022-2461 VL - 56 IS - 30 SP - 17319 EP - 17336 ER - TY - GEN A1 - Fouzia, Hammadi A1 - Fellah, Mamoun A1 - Hezil, Naouel A1 - Aissani, Linda A1 - Mimanne, Goussem A1 - Mechachti, Said A1 - Samad, Mohammed Abdul A1 - Montagne, Alex A1 - Iost, Alain A1 - Weiß, Sabine A1 - Obrosov, Aleksei T1 - The effect of milling time on the microstructure and mechanical properties of Ti-6Al-4Fe alloys T2 - Materials Today Communications N2 - Replacement of toxic and expensive vanadium (V) in medical grade titanium alloys with cheaper and non-toxic elements such as iron (Fe) or niobium (Nb), is an important step forward in developing safer and less expensive biomaterials. Evaluating the effect of different process parameters such as the milling time on the properties of these newly developed alloys helps in understanding and controlling their behavior. Hence, in this study, the influence of ball-milling duration (2, 6, 8, 12 and 18 h) on crystalline structure, phase evolution, densification, and mechanical characteristics of biomedical nanocrystalline Ti-6Al-4Fe (wt. %) alloys is investigated. X-ray diffraction (XRD) confirmed that after 6 h of milling, aluminum (Al) and Fe completely dissolved into Ti matrix to form a solid solution of Ti (Al, Fe). XRD further revealed that the crystallite size decreased from 56 to 30 nm and the micro-strain increased with an increase in milling time. A decrease in porosity along with an increase in density is also observed for the alloys with increasing milling time. Moreover, the values of porosity obtained for the developed Ti-6Al-4Fe alloys ranged from 1 to 12 %, which is comparable to the porosity of one of the cortical bones making it a potential candidate for bone replacements. Microhardness measurements showed that the hardness of the Ti-6Al-4Fe alloys was greater than the hardness of the conventional Ti-6Al-4V alloys. It was observed that the Ti-6Al-4Fe alloy fabricated with the powders milled for 2 h showed the lowest value of Young’s Modulus. Milling time also had a significant effect on the surface roughness of the alloy samples, which showed a decreasing trend with increasing milling times. KW - Ti-based alloys KW - Microstructure KW - Mechanical properties KW - Ball-milling KW - Biomaterials KW - Milling time Y1 - 2021 UR - https://www.sciencedirect.com/science/article/abs/pii/S2352492821004207#! U6 - https://doi.org/10.1016/j.mtcomm.2021.102428 SN - 2352-4928 VL - 27 ER - TY - GEN A1 - Ermilova, Evgeniia A1 - Nikitin, Alexander A1 - Weiß, Sabine ED - Daehn, Glenn ED - Cao, Jian ED - Kinsey, Brad ED - Tekkaya, A. Erman ED - Vivek, Anupam ED - Yoshida, Yoshinori T1 - The Local Strain Evolution for Structured Sheet Metals During Uniaxial Deformation T2 - Forming the Future : Proceedings of the 13th International Conference on the Technology of Plasticity N2 - Structured materials can be progressive alternatives to commonly used flat sheets because of their higher bending stiffness and stability compared to flat sheet metals, made of the same alloy. The application of sheet metals requires accurate information regarding their strength and deformation behavior. Such data are not commonly available and have to be measured by specific test setups and implementation of tests. The aim of this work is to obtain new knowledge about deformation mechanisms of structured sheet metals. Structured sheet metals (SSM) made of conventional deep-drawing steel DC04 were investigated by means of tensile tests. The influence of the structure type arrangement on the deformation behavior was analyzed. The evolution of local strains was analyzed by means of strain gauge measurements as well as 3D-displacement measurements with an ARAMIS highresolution camera system. Local orientation changes in different structural elements were measured using the electron backscatter diffraction technique. KW - structured sheet metals, ssm, tensile test, ARAMIS, strain gauge, EBSD, REM, electron microscopy, DC04 steel Y1 - 2021 SN - 978-3-030-75381-8 SN - 978-3-030-75380-1 SN - 978-3-030-75383-2 U6 - https://doi.org/10.1007/978-3-030-75381-8_143 SN - 2367-1696 SP - 1701 EP - 1711 PB - Springer, Cham ET - 1 ER - TY - GEN A1 - Evdokimov, Anton A1 - Doynov, Nikolay A1 - Ossenbrink, Ralf A1 - Obrosov, Aleksei A1 - Weiß, Sabine A1 - Michailov, Vesselin T1 - Thermomechanical laser welding simulation of dissimilar steel-aluminum overlap joints T2 - International Journal of Mechanical Sciences N2 - Mixing of steel and aluminum within the weld pool during keyhole laser welding results in a complex dissimilar microstructure, which in turn, initiates a shift in weld metal mechanical properties. In this study, a numerical model for computation of distortions in laser-welded dissimilar overlap joints (austenitic stainless steel 304 – 6082-T6 aluminum alloy), which considers properties of the mixed steel-aluminum weld metal was developed. The required yield strength, Young's modulus, and strain hardening exponent of the weld metal were experimentally determined using the indentation technique coupled with energy-dispersive X-ray spectroscopy. The designed material model calculates the weld elastic-plastic properties as a function of the aluminum concentration. The softening of the alloys in the heat-affected zone was determined by physical simulations and considered as a function of maximum temperature. Computed and measured distortions showed good agreement for various welding regimes with an average deviation of 18.4%. The sensitivity analyses indicated that the application of the developed weld material model significantly improves the accuracy of the thermomechanical simulations. Y1 - 2021 U6 - https://doi.org/10.1016/j.ijmecsci.2020.106019 SN - 1879-2162 VL - 190 ER - TY - GEN A1 - Shapovalov, Oleg A1 - Shapovalova, Mariia A1 - Ossenbrink, Ralf A1 - Heckel, Thomas A1 - Michailov, Vesselin A1 - Weiß, Sabine A1 - Gaal, Mate T1 - Verbessern der Korrosionsbeständigkeit eines hochtemperaturbeständigen Ultraschalldämpfungskörpers mittels Laserstrahl-Auftragschweißen T2 - DVS Berichte 2021 N2 - Während in einem konventionellen Ultraschallprüfkopf ein Kunststoffdämpfungskörper mit Kleber oder Öl an einen Piezoschwinger angekoppelt ist, werden als Hochtemperaturlösung feinporöse sintermetallische Dämpfungsmaterialien mit einer Flüssigglasankopplung eingesetzt. Um dabei das Sintermetall vor dem korrosiven Angriff der Glasschmelze zu schützten, wird am Dämpfungskörper gegenwärtig Gold- oder Platinfolie zeit- und kostenaufwendig appliziert. In der aktuellen Arbeit wurde eine Methode zum Korrosionsschutz der sintermetallischen Oberfläche aus rostfreiem Stahl mittels Laser-Pulverauftragschweißen entwickelt. Im Laufe einer Schweißparameterstudie auf dem Substratmaterial aus massivem rostfreiem Stahl wurde die Eignung unterschiedlicher Auftragsmaterialien auf Nickel- und Kobaltbasis untersucht. Dabei wurde zunächst der Einfluss verschiedener Schweißparameter wie Laserleistung, Vorschubgeschwindigkeit und Pulvermenge auf die Auftragsqualität (Nahtform, Vermischungsgrad, Porosität) metallografisch bewertet. Anschließend wurden die aufgetragenen Schichten hinsichtlich ihrer Korrosionsbeständigkeit getestet. Der Kontakt mit einer flüssigen Glasmischung bei 500 °C hat bei keiner der beschichteten Proben sichtbare Korrosionswirkung gezeigt. Als Resultat der Schweißparameterstudie haben sich besonders die nickelbasierten Pulver als gut geeignete Materialien für den Prozess gezeigt. Die identifizierten Schweißparameter wurden im nächsten Schritt erfolgreich an das sintermetallische Substrat angepasst. Y1 - 2021 UR - https://www.dvs-ev.de/call4papers/abstract.cfm?vid=109&pid=7032 SN - 978-3-96144-147-1 SP - 370 EP - 377 PB - DVS Media GmbH CY - Düsseldorf ER -