@incollection{KleinTsaiSchmidt, author = {Klein, Marten and Tsai, Pei-Yun and Schmidt, Heiko}, title = {Stochastic Modeling and Large-Eddy Simulation of Heated Concentric Coaxial Pipes}, series = {New Results in Numerical and Experimental Fluid Mechanics XIV, STAB/DGLR Symposium 2022}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics XIV, STAB/DGLR Symposium 2022}, editor = {Dillmann, Andreas and Heller, Gerd and Kr{\"a}mer, Ewald and Wagner, Claus and Weiss, Julien}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-40482-5}, issn = {1612-2909}, doi = {10.1007/978-3-031-40482-5_41}, pages = {435 -- 444}, abstract = {Turbulent concentric coaxial pipe flows are numerically investigated as canonical problem addressing spanwise curvature effects on heat and momentum transfer that are encountered in various engineering applications. It is demonstrated that the wall-adapting local eddy-viscosity (WALE) model within a large-eddy simulation (LES) framework, without model parameter recalibration, has limited predictive capabilities as signalized by poor representation of wall curvature effects and notable grid dependence. The identified lack in the modeling of radial transport processes is therefore addressed here by utilizing a stochastic one-dimensional turbulence (ODT) model. A standalone ODT formulation for cylindrical geometry is used in order to assess to which extent the predictability can be expected to improve by utilizing an advanced wall-modeling strategy.}, language = {en} }