@misc{KleinMedinaMendezSchmidt, author = {Klein, Marten and Medina M{\´e}ndez, Juan Al{\´i} and Schmidt, Heiko}, title = {Simulating Volatile Wind Energy: Stochastic Forward Modeling and Machine Learning}, publisher = {Innovation Hub 13, TH Wildau}, address = {Wildau}, pages = {1}, abstract = {The transformation of the energy sector is based on the integration of various renewable sources, such as wind and solar energy. One of the key challenges for the integration of these sources into the existing power grid is their erratic and sometimes discontinuous availability (volatility). Wind energy is one of the most relevant sources of CO2 neutral electric energy, but volatile due to fluctuating wind fields on multiple scales. This has already been realized so that senors provide real-time information on the scale of individual wind turbines. However, fore- casting remains an unresolved problem since numerical weather prediction models cannot provide the necessary level of detail. New modeling strategies are required that integrate turbine-scale and meso-scale information for accurate site-specific short-term prediction. Present and forthcoming research aims to incorporate fluctuations on multiple levels of fidelity, depending on the abstraction layer}, language = {en} } @misc{MedinaMendezKleinSchoepsetal., author = {Medina M{\´e}ndez, Juan Ali and Klein, Marten and Sch{\"o}ps, Mark Simon and Schmidt, Heiko}, title = {Predicting volatile wind energy: Stochastic forward modeling and machine learning}, series = {86. Jahrestagung der DPG (86th Annual Conference of the DPG), DPG-Fr{\"u}hjahrstagung 2023, (DPG Spring Meeting 2023 of the Matter and Cosmos Section (SMuK), 20-24 March 2023, Technische Universit{\"a}t Dresden}, journal = {86. Jahrestagung der DPG (86th Annual Conference of the DPG), DPG-Fr{\"u}hjahrstagung 2023, (DPG Spring Meeting 2023 of the Matter and Cosmos Section (SMuK), 20-24 March 2023, Technische Universit{\"a}t Dresden}, publisher = {Deutsche Physikalische Gesellschaft}, address = {Bad Honnef}, issn = {2751-0522}, pages = {S. 343}, language = {en} } @misc{KleinStarickZenkeretal., author = {Klein, Marten and Starick, Tommy and Zenker, Christian and Medina M{\´e}ndez, Juan Al{\´i} and Schmidt, Heiko}, title = {Reduced order stochastic modeling of turbulent mixing based on conservative baker's maps}, series = {Proceedings of the 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM-14)}, journal = {Proceedings of the 14th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM-14)}, publisher = {ERCOFTAC}, address = {Barcelona, Spain}, pages = {613 -- 618}, abstract = {The detailed numerical representation of turbulent mixing processes is a standing challenge for non-premixed chemically reacting flows. The full range of relevant flow scales needs to be captured and it is also necessary to distinguish turbulent advective from molecular diffusive processes in order to represent Reynolds and Schmidt number effects. These requirements are addressed here by utilizing two different map-based stochastic turbulence modeling strategies. The one-dimensional turbulence (ODT) model utilizes event-based turbulence modeling, whereas the hierarchical parcel-swapping (HiPS) model is a fully event-based mixing model. ODT provides full-scale resolution at affordable costs by dimensional model reduction based on the boundary-layer approximation to shear flow. HiPS is far less costly than ODT but currently limited to locally homogeneous isotropic turbulence. The physics-compatible modeling capabilities with respect to phase-space representation of turbulent mixing are demonstrated for two canonical cases using standalone model formulations.}, language = {en} } @misc{KleinZenkerStaricketal., author = {Klein, Marten and Zenker, Christian and Starick, Tommy and Schmidt, Heiko}, title = {Stochastic modeling of multiple scalar mixing in a three-stream concentric coaxial jet based on one-dimensional turbulence}, series = {International Journal of Heat and Fluid Flow}, volume = {104}, journal = {International Journal of Heat and Fluid Flow}, issn = {0142-727X}, doi = {10.1016/j.ijheatfluidflow.2023.109235}, pages = {1 -- 17}, abstract = {Modeling turbulent mixing is a standing challenge for nonpremixed chemically reacting flows. Key complications arise from the requirement to capture all relevant scales of the flow and the necessity to distinguish between turbulent advective transport and molecular diffusive transport processes. In addition, anisotropic mean shear, variable advection time scales, and the coexistence of turbulent and nonturbulent regions need to be represented. The fundamental issues at stake are addressed by investigating multi-scalar mixing in a three-stream coaxial jet with a map-based stochastic one-dimensional turbulence model. ODT provides full-scale resolution at affordable costs by a radical reduction of complexity compared to high-fidelity Navier-Stokes solvers. The approach is partly justified by an application of the boundary-layer approximation, but neglects fluctuating axial pressure gradients. It is demonstrated that low-order scalar statistics are reasonably but not fully captured. Despite this shortcoming, it is shown that the model is able to reproduce experimental state-space statistics of multi-stream multi-scalar mixing. The model therefore offers physics-compatible improvements in multi-stream mixing modeling despite some fundamental limitations that remain from unjustified assumptions.}, language = {en} } @misc{ReibleHilleHartmannetal., author = {Reible, Benedikt and Hille, Julian F. and Hartmann, Carsten and Delle Site, Luigi}, title = {Finite size effects and thermodynamic accuracy in many-particle systems}, series = {Physical Review Research}, volume = {5}, journal = {Physical Review Research}, number = {2}, issn = {2643-1564}, doi = {10.1103/PhysRevResearch.5.023156}, pages = {023156-1 -- 023156-8}, language = {en} } @misc{ReibleHartmannDelleSite, author = {Reible, Benedikt and Hartmann, Carsten and Delle Site, Luigi}, title = {Two-sided Bogoliubov inequality to estimate finite-size effects in quantum molecular simulations}, series = {Letters in Mathematical Physics}, volume = {112}, journal = {Letters in Mathematical Physics}, number = {5}, issn = {1573-0530}, doi = {10.1007/s11005-022-01586-3}, pages = {1 -- 17}, language = {en} } @misc{BeisegelKoehlerScheffleretal., author = {Beisegel, Jesse and K{\"o}hler, Ekkehard and Scheffler, Robert and Strehler, Martin}, title = {Certifying Fully Dynamic Algorithms for Recognition and Hamiltonicity of Threshold and Chain Graphs}, series = {Algorithmica}, volume = {85}, journal = {Algorithmica}, number = {8}, issn = {0178-4617}, doi = {10.1007/s00453-023-01107-1}, pages = {2454 -- 2481}, language = {en} } @misc{VallemKleinSchmidt, author = {Vallem, Rishindra and Klein, Marten and Schmidt, Heiko}, title = {Numerical modeling and simulation of two-phase internal flow instabilities using Smoothed Particle Hydrodynamics (SPH)}, series = {STAB Jahresbericht 2023}, volume = {21/2023}, journal = {STAB Jahresbericht 2023}, publisher = {Deutsche Str{\"o}mungsmechanische Arbeitsgemeinschaft (STAB)}, address = {G{\"o}ttingen, Germany}, pages = {158 -- 159}, language = {en} } @misc{TsaiSchmidtKlein, author = {Tsai, Pei-Yun and Schmidt, Heiko and Klein, Marten}, title = {Stochastic modeling of asymmetric turbulent boundary layers in annular pipe flow}, doi = {10.13140/RG.2.2.18789.78567}, pages = {1}, language = {en} } @misc{KleinSchmidt, author = {Klein, Marten and Schmidt, Heiko}, title = {Capturing features of turbulent Ekman-Stokes boundary layers with a stochastic modeling approach}, series = {Advances in Science and Research}, volume = {20}, journal = {Advances in Science and Research}, issn = {1992-0636}, doi = {10.5194/asr-20-55-2023}, pages = {55 -- 64}, abstract = {Atmospheric boundary layers (ABLs) exhibit transient processes on various time scales that range from a few days down to seconds, with a scale separation of the large-scale forcing and the small-scale turbulent response. One of the standing challenges in modeling and simulation of ABLs is a physically based representation of complex multiscale boundary layer dynamics. In this study, an idealized time-dependent ABL, the so-called Ekman-Stokes boundary layer (ESBL), is considered as a simple model for the near-surface flow in the mid latitudes and polar regions. The ESBL is driven by a prescribed temporal modulation of the bulk-surface velocity difference. A stochastic one-dimensional turbulence (ODT) model is applied to the ESBL as standalone tool that aims to resolve all relevant scales of the flow along a representative vertical coordinate. It is demonstrated by comparison with reference data that ODT is able to capture relevant features of the time-dependent boundary layer flow. The model predicts a parametric enhancement of the bulk-surface coupling in the event of a boundary layer resonance when the flow is forced with the local Coriolis frequency. The latter reproduces leading order effects of the critical latitudes. The model results suggest that the bulk flow decouples from the surface for high forcing frequencies due to a relative increase in detached residual turbulence.}, language = {en} }